О КОМПАНИИ

ООО «ЧелябинскСпецГражданСтрой» является производителем стальных цельносварных шаровых кранов торговой марки LD уже более 10 лет. Благодаря высоким стандартам качества, входному контролю материалов, испытаниям готовой продукции шаровые краны LD стали одними из лучших в стране, а компания завоевала доверие покупателей и добилась лидерского положения на рынке. За время работы завода общая мощность предприятия выросла более чем в 300 раз и составляет на сегодняшний день 1 млн. кранов в год.

Краны марки LD представляют собой стальные цельносварные шаровые краны промышленного назначения, предназначенные для монтажа в системах тепловодоснабжения, трубопроводах для транспортировки нефти и газа, а также агрессивных сред в химической промышленности.

Номенклатура Шаровых кранов LD включает условные диаметры (DN) от 15 до 700 мм, а также условное давление (PN) от 1,6 МПа до 4,0 МПа.

В зависимости от условий эксплуатации и характеристик рабочей среды Шаровые краны LD изготавливаются из следующих марок стали:

- Шаровые краны LD из ст.20
- Шаровые краны LD из стали 12X18H10T
- Шаровые краны LD Energy из стали 09Г2С
- Шаровые краны LD Energy из стали 12X18H10T

Шаровые краны LD могут быть использованы как в умеренном, так и в холодном климате.

Линейка кранов LD Energy предназначена для использования в условиях, которые требуют безотказной работы в диапазоне температур от -60°C до +200°C, в тех случаях, когда свойств стали 20 недостаточно.

Продукция LD Energy обладает рядом отличительных особенностей:

- сталь 09Г2С на корпусных деталях и патрубках
- увеличенная толщина стенок корпусных элементов (бесшовная труба)
- строительные длины на газовую линейку Energy Gas соответствуют строительным длинам европейских производителей
- увеличенная высота горловины для удобства монтажа изоляции
- двухкомпонентная износостойкая окраска (синяя)

В зависимости от способа присоединения к трубопроводу выделяются следующие основные типы Шаровых кранов LD:

- КШЦФ фланцевое присоединение по ГОСТ 12815-80
- КШЦП приварное присоединение
- КШЦМ- муфтовое присоединение
- КШЦЦ цапковое присоединение
- КШЦШ- штуцерное присоединение
- КШЦК комбинированное присоединение

Цельносварные шаровые краны LD не имеют каких-либо резьбовых разъемов на корпусе, через которые возможна протечка при динамических нагрузках на трубопровод. В шаровом кране используются не литые элементы, как в большинстве типов запорной арматуры, а обжатые холодной штамповкой заготовки, изготовленные из трубного сортамента крупнейших отечественных металлургических заводов.

Высокое качество Шаровых кранов LD обеспечивает максимальную герметичность класса «А» по ГОСТ Р 54808-2011.

Компания ООО «ЧелябинскСпецГражданСтрой» имеет развитую дилерскую сеть. Официальные представители завода находятся в 50 крупных городах России, стран СНГ и дальнего зарубежья.

Шаровые краны LD имеют обозначения КШЦФ, КШЦП, КШЦМ, КШЦЦ, КШЦШ, КШЦК и т.д. Правообладателем данных товарных знаков является ООО «ЧелябинскСпецГражданСтрой». Любое использование данных товарных знаков другими производителями является незаконным. Продукция и разработки компании ООО «ЧелябинскСпецГражданСтрой» защищены патентами. Информация, представленная в данном каталоге, является интеллектуальной собственностью компании и охраняется законом. Частичная или полная перепечатка допускается только с разрешения правообладателя.

ОБОЗНАЧЕНИЕ, ВАРИАНТЫ ИСПОЛНЕНИЯ ШАРОВЫХ КРАНОВ LD ENERGY

КШ	Ц	X	X	Energy	XXX	XX.	XX.	X/X.
Исполнение корпуса:								
цельносварной	Ц							
Присоединение к трубопр	оводу:							
фланцевое		Φ						
приварное		П						
муфтовое		M						
цапковое		Ц						
штуцерное		Ш						
комбинированное		K						
для спуска воздуха		C						
Управление:								
ручное .	нет обозна	ачен	ия					
. э с редуктором			P					
под электропривод			Э					
под пневмопривод			П					
Линейка								
Рабочая среда:					•			
жидкость			нет	обознач	ения			
газ					Gas			
Условный диаметр DN								
Условное давление PN, Па	1							
Условный проход:								
полнопроходной								П/П
								Н/П

[•] Пример условного обозначения стандартнопроходного Шарового крана LD Energy для жидких сред фланцевого присоединения DN80 сэффективным диаметром 70 мм, PN1,6 МПа сручным управлением скорпусом из стали 09Г2С: КШЦФ Energy 080/070.016. Н/П.03

КРАН ШАРОВОЙ СТАНДАРТНОПРОХОДНОЙ

ФЛАНЦЕВОЕ СОЕДИНЕНИЕ

СПЕЦИФИКАЦИЯ МАТЕРИАЛОВ

Корпус: легированная сталь (09 Γ 2C) Шток: нержавеющая сталь (20X13)

Шар: нержавеющая сталь

DN 15-32: 20X13; DN 40-65: AISI 304; DN 80-700: AISI 409

Уплотнение штока: фторсилоксановый

эластомер

Уплотнение штока/подшипник

скольжения:

фторопласт Ф-4К20

Уплотнение шара: фторопласт Ф-4К20

с дублирующим уплотнением из фторсилоксанового эластомера

УПРАВЛЕНИЕ

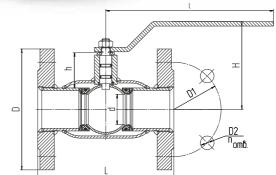
DN 15-250: рукоятка – оцинкованная

углеродистая сталь с полимерным

наконечником

DN 150-250: рекомендуется механический

редуктор с червячной передачей DN 300-700: механический редуктор в


комплекте ФЛАНЦЫ

Присоединительные размеры по ГОСТ

12815-80

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

DN	PN	код	d	D	D1	D2	n otb	h	н	-1	L	Вес, кг
15	40	КШЦФ Energy Gas 015.040.H/П.03	10	95	65	14	4	60,5	131,7	159	130	1,4
20	40	КШЦФ Energy Gas 020.040.H/П.03	15	105	75	14	4	61	135	159	150	2,1
25	40	КШЦФ Energy Gas 025.040.H/П.03	18	115	85	14	4	61,2	137,7	159	160	2,6
32	40	КШЦФ Energy Gas 032.040.H/П.03	24	135	100	18	4	62,5	142	159	180	3,8
40	40	КШЦФ Energy Gas 040.040.H/П.03	30	145	110	18	4	59	123,5	217	200	4,9
50	40	КШЦФ Energy Gas 050.040.H/П.03	40	160	125	18	4	63	132	217	230	6,1
65	16	КШЦФ Energy Gas 065.016.H/П.03	49	180	145	18	4	58,4	137	217	270	8,5
65	25	КШЦФ Energy Gas 065.025.H/П.03	49	180	145	18	8	58,4	137	217	270	8,5
80	16	КШЦФ Energy Gas 080/070.016.H/П.03	63	195	160	18	8	87	174	314,5	280	11,2
80	25	КШЦФ Energy Gas 080/070.025.H/П.03	63	195	160	18	8	87	174	314,5	280	11,4
100	16	КШЦФ Energy Gas 100/080.016.H/П.03	75	215	180	18	8	87	183,5	314,5	300	14,1
100	25	КШЦФ Energy Gas 100/080.025.H/П.03	75	230	190	22	8	87	183,5	314,5	300	14,6
125	16	КШЦФ Energy Gas 125/100.016.H/П.03	100	245	210	18	8	94	197	525	325	23,0
125	25	КШЦФ Energy Gas 125/100.025.H/П.03	100	270	220	26	8	94	197	525	325	23,1
150	16	КШЦФ Energy Gas 150/125.016.H/П.03	125	280	240	22	8	97,8	213	525	350	30,6
150	25	КШЦФ Energy Gas 150/125.025.H/П.03	125	300	250	26	8	97,8	213	525	350	30,7
200	16	КШЦФ Energy Gas 200/150.016.H/П.03	148	335	295	22	12	92	238	625	450	56,0
200	25	КШЦФ Energy Gas 200/150.025.H/П.03	148	360	310	26	12	92	238	625	450	58,1
250	16	КШЦФ Energy Gas 250/200.016.H/П.03	200	405	355	26	12	100	273	625	530	87,2
250	25	КШЦФ Energy Gas 250/200.025.H/П.03	200	425	370	30	12	100	273	625	530	91,0
300*	16	КШЦФ Energy Gas 300/250.016.H/П.03	240	460	410	26	12	167	634,5	-	750	170,7
350*	16	КШЦФ Energy Gas 350/300.016.H/П.03	300	520	470	26	16	195	688,5	-	750	259,8
400*	16	КШЦФ Energy Gas 400/305.016.H/П.03	300	580	525	30	16	170	688,5	=	880	300,4
500*	16	КШЦФ Energy Gas 500/400.016.H/П.03	390	710	650	33	20	171	871	-	990	597,8
600*	16	КШЦФ Energy Gas 600/500.016.H/П.03	500	840	770	36	20	970	217	-	1173	900(1030)**
600*	25	КШЦФ Energy Gas 600/500.025.H/П.03	500	840	770	39	20	970	217	-	1173	920(1050)**
700*	16	КШЦФ Energy Gas 700/600.016.H/П.03	600	910	840	36	24	1065	270	-	1376	1160(1290)**
700*	25	КШЦФ Energy Gas 700/600.025.H/П.03	600	960	875	42	24	1065	270	-	1376	1245(1375)**

^{*}Поставляется с редуктором в комплекте. Строительная высота указана с редуктором

^{**} Вес с редуктором Q16000 S (Вес с редуктором Q24000 S)

КРАН ШАРОВОЙ ПОЛНОПРОХОДНОЙ

ФЛАНЦЕВОЕ СОЕДИНЕНИЕ

СПЕЦИФИКАЦИЯ МАТЕРИАЛОВ

Корпус: легированная сталь (09Г2С) Шток: нержавеющая сталь (20Х13)

Шар: нержавеющая сталь

DN 15-32: 20X13; DN 40-65: AISI 304; DN 80-600: AISI 409

Уплотнение штока: фторсилоксановый

эластомер

Уплотнение штока/подшипник

скольжения:

фторопласт Ф-4К20

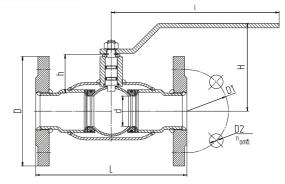
Уплотнение шара: фторопласт Ф-4K20 с дублирующим уплотнением из

фторсилоксанового эластомера

УПРАВЛЕНИЕ

DN 15-200: рукоятка – оцинкованная углеродистая сталь с полимерным

наконечником


DN 150-200: рекомендуется механический

редуктор с червячной передачей DN 250-600: механический редуктор в комплекте

ФЛАНЦЫ

Присоединительные размеры

по ГОСТ 12815-80

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

DN	PN	код	d	D	D1	D2	n otb	h	н	1	L	Вес, кг
15	40	КШЦФ Energy Gas 015.040.П/П.03	15	95	65	14	4	63,85	135,0	159	130	2,1
20	40	КШЦФ Energy Gas 020.040.П/П.03	18	105	75	14	4	63,7	137,7	159	150	2,6
25	40	КШЦФ Energy Gas 025.040.П/П.03	24	115	85	14	4	65,5	142,0	159	160	3,8
32	40	КШЦФ Energy Gas 032.040.П/П.03	30	135	100	18	4	64	123,5	217	180	4,9
40	40	КШЦФ Energy Gas 040.040.П/П.03	40	145	110	18	4	67,5	132,0	217	200	6,1
50	40	КШЦФ Energy Gas 050.040.П/П.03	49	160	125	18	4	67,9	137,0	217	250	8,5
65	16	КШЦФ Energy Gas 065.016.П/П.03	63	180	145	18	4	93,5	174,0	314,5	290	11,2
65	25	КШЦФ Energy Gas 065.025.П/П.03	63	180	145	18	8	93,5	174,0	314,5	290	11,4
80	16	КШЦФ Energy Gas 080.016.П/П.03	75	195	160	18	4	96,5	183,5	314,5	300	14,1
80	25	КШЦФ Energy Gas 080.025.П/П.03	75	195	160	18	8	96,5	183,5	314,5	300	14,6
100	16	КШЦФ Energy Gas 100.016.П/П.03	100	215	180	18	8	106,3	197	525	350	23,0
100	25	КШЦФ Energy Gas 100.025.П/П.03	100	230	190	22	8	106,3	197	525	350	23,1
125	16	КШЦФ Energy Gas 125.016.П/П.03	125	245	210	18	8	110,75	213	525	400	30,6
125	25	КШЦФ Energy Gas 125.025.П/П.03	125	270	220	26	8	110,8	213	525	400	30,7
150	16	КШЦФ Energy Gas 150.016.П/П.03	148	280	240	22	8	122,4	238	625	410	56,0
150	25	КШЦФ Energy Gas 150.025.П/П.03	148	300	250	26	8	122,4	238	625	410	58,1
200	16	КШЦФ Energy Gas 200.016.П/П.03	200	335	295	22	12	127,3	273	625	530	87,2
200	25	КШЦФ Energy Gas 200.025.П/П.03	200	360	310	26	12	127,3	273	625	530	91,0
250*	16	КШЦФ Energy Gas 250.016.П/П.03	240	405	355	26	12	193	634,5	-	750	170,7
300*	16	КШЦФ Energy Gas 300.016.П/П.03	300	460	410	26	12	221	688,5	-	750	259,8
400*	16	КШЦФ Energy Gas 400.016.П/П.03	390	580	525	30	16	223	871	-	990	597,8
500*	16	КШЦФ Energy Gas 500.016.П/П.03	500	710	650	33	20	970	217	-	1017	810(940)**
500*	25	КШЦФ Energy Gas 500.025.П/П.03	500	730	660	36	20	970	217	-	1017	830(960)**
600*	16	КШЦФ Energy Gas 600.016.П/П.03	600	840	770	36	20	1065	270	-	1173	1095(1225)**
600*	25	КШЦФ Energy Gas 600.025.П/П.03	600	840	770	39	20	1065	270	-	1173	1115(1245)**

^{*}Поставляется с редуктором в комплекте. Строительная высота указана с редуктором

^{**} Вес с редунтором Q16000 S (Вес с редунтором Q24000 S)

ИНСТРУКЦИИ

УКАЗАНИЯ ПО ПРИМЕНЕНИЮ

- **1.** Краны должны оставаться работоспособными и сохранять свои параметры при воздействии минимальных температур рабочей и окружающей среды от -60 до +200 °C.
- 2. Краны должны быть работоспособными и сохранять свои параметры при воздействии:
 - Температуры рабочей среды до +200 °С, при рабочем давлении 0 атм.
 - •Дополнительного нагрева от прямых солнечных лучей до +80 °С для всех вариантов исполнения с ручным управлением, предназначенных для работы на открытом воздухе.
- 3. При опрессовке сделать 2-3 цикла «открыто-закрыто».

ИНСТРУКЦИЯ ПО МОНТАЖУ КРАНА

- 1. При монтаже и эксплуатации кранов руководствоваться паспортом и руководством по эксплуатации.
- 2. Краны могут устанавливаться на трубопроводах в любом положении, обеспечивающем удобство их эксплуатации и доступа к ручному приводу.
- 3. Максимальная амплитуда вибросмещения трубопроводов не более 0,25 мм.
- 4. Допуск параллельности уплотнительных поверхностей фланцев трубопровода и крана 0,2 мм.
- 5. Перед установкой крана трубопровод должен быть очищен от грязи, песка, окалины и т.д.
- 6. При монтаже крана на вертикальном трубопроводе:
 - В момент приварки верхнего конца кран должен быть полностью открыт (во избежание повреждения искрами поверхности шара и уплотнения);
 - При приварке нижнего конца кран должен быть полностью закрыт (во избежание возникновения тяги от тепла сварки).
- 7. При монтаже крана на горизонтальном трубопроводе кран должен быть полностью открыт.
- **8.** Приварку крана к трубопроводу производить электросваркой. Газовая сварка допускается для приварки кранов до DN 150.
- **9.** Зону расположения уплотнительных фторопластовых колец необходимо охлаждать от перегрева (свыше $80\,^{\circ}$ C) увлажненной ветошью.
- **10.** ЗАПРЕЩАЕТСЯ ПРОВОРАЧИВАТЬ ШАР НЕПОСРЕДСТВЕННО ПОСЛЕ СВАРКИ (без предварительного охлаждения).
- 11. Во избежание резких перепадов давления/гидроудара в трубопроводе открытие и закрытие крана производить плавно, без рывков.
- **12.** Для предотвращения отложений на поверхности шара (заклинивания) необходимо несколько раз в год совершать по 2-3 цикла «открыто-закрыто».
- **13.** При монтаже и эксплуатации кранов должны выполняться требования безопасности по ГОСТ 12.2.063-81.

ВНИМАНИЕ! ПРИ ЭКСПЛУАТАЦИИ КРАНОВ ЗАПРЕЩАЕТСЯ:

- 1. Дросселирование среды при частично открытом затворе (п.3.26 ГОСТ 12.2.063-81).
- 2. Использовать краны в качестве регулирующих устройств.
- **3.** Снимать кран, производить работы по подтяжке фланцевых соединений при наличии рабочей среды и давления в трубопроводе.
- 4. Устранять перекосы фланцев трубопровода за счет натяга фланцев крана.
- 5. Эксплуатировать кран при отсутствии оформленного на него паспорта.
- 6. Применять для управления краном рычаги, удлиняющие плечо рукоятки.
- 7. Использовать кран в качестве опоры для трубопровода.