

Гос. реестр средств измерений № 28112-04

KAPAT®-KOMNAKT

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ РЭ 4218-006-32277111-2004

Содержание

1 Назначение	4
2 Характеристики	4
2.1 Конструктивное исполнение	4
2.2 Общие характеристики	6
2.3 Технические характеристики	7
2.3.1 Гидравлические характеристики	
2.4 Метрологические характеристики	
2.5 Характеристики электромагнитной совместимости	
2.6 Характеристики электропитания и ресурс работы	
2.7 Условия эксплуатации	
2.8 Характеристики надежности	
3 Описание работы с теплосчетчиком	. 11
3.1 Визуальное считывание данных теплосчетчика	
3.2 Управление теплосчетчиком с помощью кнопки	
3.2.1 Отображение номера группы параметров	
3.2.2 Отображение подгруппы	
3.2.3 Варианты нажатия кнопки	
3.3 Описание параметров теплосчетчика	
3.3.1 Текущие значения	16
3.3.2 Архивные значения	
3.3.3 Сервисные параметры	
3.3 Сообщения о состоянии теплосчетчика и ошибках	
3.3.1 Сообщения о работе теплосчетчика	
3.3.2 Вывод ошибок	
3.4 Оптический интерфейс	
3.5 Интерфейс шины M-bus (опция)	
3.6 Дистанционный импульсный выход (опция)	
4 Размещение, монтаж и подготовка к работе	
4.1 Общие требования	
4.2 Эксплуатационные ограничения	28
4.3 Рекомендации для проектирования	28
4.4 Монтаж теплосчетчика	
4.4.1 Монтаж проточной части теплосчетчика	
4.4.2 Монтаж измерительного патрона с вычислителем	
4.4.3 Монтаж термопреобразователей	
4.4.4 Пуск системы	
5 Техническое обслуживание	
6 Маркировка и пломбирование	
7 Упаковка	
8 Транспортировка и хранение	
9 Поверка	
10 Гарантийные обязательства	. 35

1 Назначение

Теплосчетчик КАРАТ®-Компакт предназначен для коммерческого учета количества потребленной тепловой энергии, в водяных закрытых системах теплоснабжения в квартирах (с горизонтальной разводкой системы отопления), коттеджах и других зданиях.

Возможность применения теплосчетчика КАРАТ®-Компакт для измерений количества теплоты подтверждается Сертификатом об утверждении типа средств измерений № 19155.Теплосчетчик КАРАТ®-Компакт внесен в Государственный реестр средств измерений под № 28112-04. Изображение сертификата о внесении в государственный реестр средств измерений РФ теплосчетчика КАРАТ®-Компакт приведено в Приложении А.

Алгоритмы вычисления количества теплоты, реализованные в КАРАТ®-Компакт, соответствуют «Правилам учета тепловой энергии и теплоносителя».

Теплосчетчики KAPAT®-Компакт полностью соответствуют требованиям ГОСТ Р 51649-2000.

Теплосчетчики КАРАТ®-Компакт внесены в Государственный реестр средств измерений республики Казахстан под № КZ.02.03.01293-2006/28112-04. Изображение сертификата о признании утверждения типа средства измерения расходомеров-счетчиков КАРАТ-РС на территории республики Казахстан приведено в Приложении Б.

Теплосчетчики КАРАТ®-Компакт внесены в Государственный реестр средств измерений республики Беларусь под № РБ 03 10 2873 06. Изображение сертификата о признании утверждения типа средства измерения расходомеровсчетчиков КАРАТ-РС на территории республики Беларусь приведено в Приложении В.

2 Характеристики

2.1 Конструктивное исполнение

Теплосчетчик KAPAT®-Компакт выполнен в виде моноблока, включающего в себя коаксиальный измерительный патрон, тепловычислитель и комплект измерительных преобразователей температуры, состоящих из платиновых термопреобразователей сопротивления по ГОСТ 6651. Состав теплосчетчика показан на рисунке 2.1.

Вычислитель выполнен в пластиковом корпусе неразрывно соединенным с измерительным патроном. На передней панели вычислителя располагаются: ЖК-дисплей и кнопка для управления просмотром данных теплосчетчика.

Конструкция измерительного патрона не содержит в себе магнитной муфты, что исключает влияние на показания теплосчетчика внешних магнитных полей.

Вычислитель с измерительным патроном с помощью резьбового соединения крепятся к проточной части (EAS-элемент). При периодической поверке допускается поверять только верхнюю съемную часть теплосчетчика, а проточную часть не демонтировать. В этом случае при поверке используется одна проточная часть на несколько теплосчетчиков. По заказу, в комплект поставки теплосчетчика

может входить запорная крышка для проточной части (рисунок 2.2). Использование запорной крышки позволит снизить затраты на периодическую поверку. Кроме того, при использовании запорной крышки, монтаж проточной части и установка вычислителя с измерительным патроном могут быть выполнены в разное время.

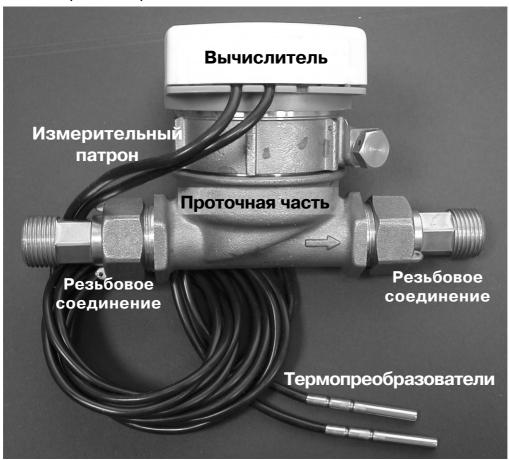


Рисунок 2.1 - Состав теплосчетчика KAPAT®-Компакт

Рисунок 2.2 – Внешний вид запорной крышки с проточной частью

2.2 Общие характеристики

Теплосчетчик KAPAT®-Компакт является микропроцессорным устройством, питающимся от встроенного автономного источника питания.

Теплосчетчик предназначен для измерение тепловой энергии в закрытых системах теплоснабжения без контроля утечек. Теплосчетчик имеет два исполнения: для измерения объема теплоносителя в обратном трубопроводе и для измерения объема теплоносителя в подающем трубопроводе. На рисунке 2.3 приведена возможные схемы измерения потребленного количества тепла.

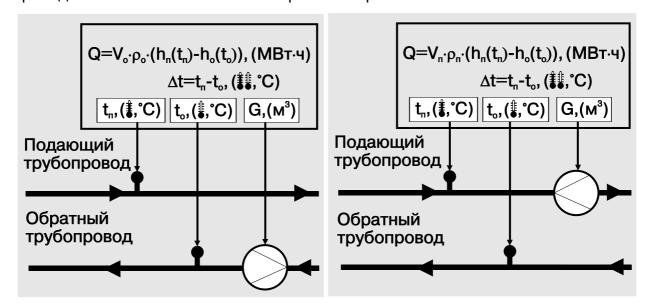


Рисунок 2.3 — Схема измерения количества теплоты, реализуемая теплосчетчиком KAPAT®-Компакт

Теплосчетчик KAPAT®-Компакт обеспечивают:

- 1) Измерение и индикацию текущих значений параметров:
- температуры теплоносителя в подающем и обратном трубопроводе, °C;
- разницу между температурой в подающем и обратном трубопроводах, °С;
- приведенных к часу значений расхода объёма воды, м³/ч;
- приведенных к часу значений потребления количества теплоты (тепловая мощность), kBt, 1 кW = 0,0008598 Гкал/ч;
- 2) Формирование архива помесячных значений теплосчетчика при корректных значениях этих параметров.

Счетчик накапливает и хранит данные о значениях измеряемых параметров в помесячном архиве за текущий и 17 предыдущих отчетных месяцев.

Архив прибора, включает в себя следующие данные:

- значение потребленного количество теплоты с момента установки на начало месяца, (МВт·ч)Гкал, 1 МW*h = 0,8598 Гкал;
 - дату начала месяца.
- 3) Просмотр на индикации для контроля значений параметров настройки счетчика (установочных параметров).
- 4) Доступ к текущим и архивным данным через встроенный опто-порт и встроенный контактный адаптер (опционально) при эксплуатации счетчика.
- 5) Выдачу импульсного сигнала пропорционального потребляемому количеству теплоты (опционально).

2.3 Технические характеристики

Таблица 2.1 — Технические характеристики теплосчетчика КАРАТ®-Компакт

Тип	Единицы измерения	Значение		
Диапазон измерения температуры	°C	от 0 до 130		
Температурный диапазон датчика расхода	°C	от 15 до 90		
Диапазон разницы температур	°C	от 3 д	o 100	
Тип термопреобразователя	Pt500			
Температурный диапазон датчика температуры	°C	от Одо	от 0до 130	
Длина погружной части термопреобразователя	ММ	25		
Диаметр погружной части термопреобразователя	ММ	5,0/5,2 (Кабель 1,5 м)		
Диаметр проточной части	ММ	15	15	20
Номинальный расход, G,	м³/час	0,6 1,5 2		2,5
Максимальный расход, G _{мах}	м³/час	1,2 3,0 5,0		5,0
Переходный расход, G _п	м³/час	0,06 0,15 0,25		0,25
Минимальный расход, G _{min}	м³/час	0,024 0,06 0,1		0,1
Порог чувствительности	м³/час	0,004	0,004	0,006
Максимальное давление	МПа	1,6		
Формат отображения данных на ЖК-дисплеи		8 десятичных,3 знака после запятой		
Срок службы элемента питания	лет	не менее 6		
Класс защиты по ГОСТ 14254	IP54			
Вес измерительного патрона	Γ	около	680	

- 1) Время хранения служебных и архивных данных не ограничено.
- 2) Теплосчетчик поставляется в состоянии, готовом для монтажа.
- 3) Отсутствие в конструкции теплосчетчика KAPAT®-Компакт магнитной муфты делает невозможной вмешательство в его работу с помощью магнита.

Габаритные размеры теплосчетчика приведены на рисунке 2.4 и в таблице 2.2.

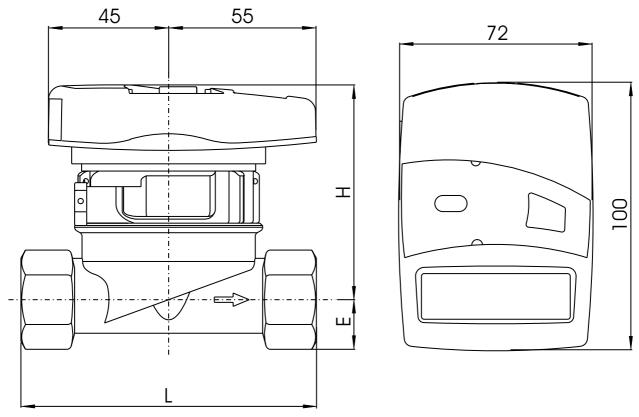


Рисунок 2.4 — Габаритные размеры вычислителя и проточной части теплосчетчика приведены.

Таблица 2.2 – Габаритные размеры теплосчетчика KAPAT®-Компакт

Параметр	15	20	
Высота: Н Е	80 мм 18,5 мм		
Ширина вычислителя	72 мм		
Длина вычислителя	100 мм		
Длина проточной части,L	110 мм	130 мм	
Длина проточной части с резьбовыми соединениями	190 мм	230 мм	

2.3.1 Гидравлические характеристики

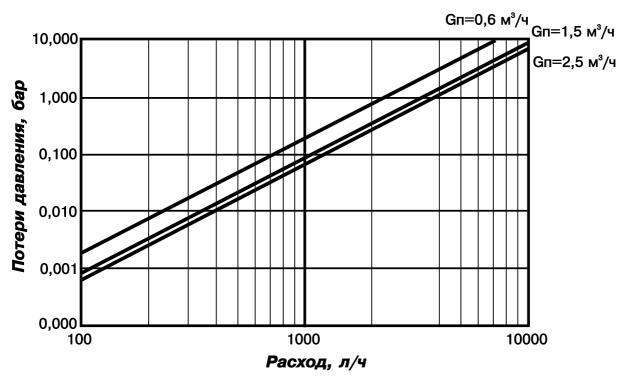


Рисунок 2.5 — Потери давления на проточной части теплосчетчика КАРАТ®-Компакт

2.4 Метрологические характеристики

1) Погрешность измерения температуры. Предел абсолютной погрешности измерения температуры в диапазоне от плюс 5°C до плюс 100°C по показаниям текущих значений составляет, в зависимости от класса термопреобразователей:

класса A - $\Delta t = (0,15+0,002 \cdot t)$, °C,

класса B - $\Delta t = (0,3+0,004 \cdot t)$, °C,

где t - текущее значение температуры в °C.

2) Погрешность измерения расхода объёма теплоносителя.

5% в диапазоне от Gmin до Gп;

2% в диапазоне от Gп до Gmax;

3) Погрешность измерения количества теплоты. Предел относительной погрешности измерения количества теплоты в диапазоне расходов теплоносителя от Gп до Gmin, при разности температур в подающем и обратном трубопроводах $3 \le \Delta t_{1,2} \le 100$ °C, составляет:

$$\delta Q = \pm (2+12/\Delta t + 0.01 \cdot G_{a}/G)$$

где Δt – значение разности температур в подающем и обратном трубопроводах теплообменного контура, °C;

G и G_в – значения расхода теплоносителя и его наибольшее значение в подающем трубопроводе (в одинаковых единицах измерений).

- 4) Погрешность хода часов. Счетчики обеспечивают ход часов и календаря с относительной погрешностью 0,01%.
 - 5). Межповерочный интервал 5 лет.

2.5 Характеристики электромагнитной совместимости

Теплосчетчик устойчив к:

- воздушным электростатическим разрядам степени жесткости 3 критерий качества функционирования А по ГОСТ Р 51317.4.2;
- радиочастотному электромагнитному полю по ГОСТ Р 51317.4.3, в соответствии с требованиями критерия качества функционирования А по ГОСТ Р 51649;
- наносекундным импульсным помехам по ГОСТ Р 51317.4.4, в соответствии с требованиями критерия качества функционирования А по ГОСТ Р 51649;
- воздействию внешнего магнитного поля напряженностью 400 А/м, образованного переменным током частотой 50 Гц.

Теплосчетчик соответствуют требованиям ГОСТ Р 51318.22 в части требований к уровню поля, создаваемого им во время работы.

Изоляция сигнальных электрических цепей теплосчетчика выдерживает воздействие испытательного напряжения 0,5 кВ частотой 50 Гц в течение 1 мин в условиях эксплуатации.

2.6 Характеристики электропитания и ресурс работы

Питание теплосчетчика осуществляется от литиевой батареи, располагаемой внутри вычислителя.

Ресурс непрерывной работы теплосчетчика KAPAT®-Компакт от одного элемента питания рассчитан на эксплуатацию в течение времени большего, чем межповерочный интервал, включая резервное время минимум в один год.

2.7 Условия эксплуатации

Условия эксплуатации теплосчетчика:

- температура окружающего воздуха от плюс 5°C до плюс 55°C;
- относительная влажность окружающего воздуха от 30 до 80 % при температуре плюс 35 °C;
 - атмосферное давление от 84 до 107 кПа;
- синусоидальная вибрации частотой от 10 до 55 Гц с амплитудой смещения не более 0,35 мм по ГОСТ 12997.

2.8 Характеристики надежности

Средняя наработка на отказ составляет не менее 120000 ч.

Срок службы составляет не менее 12 лет. В процессе эксплуатации допускается замена отдельных функциональных узлов теплосчетчика в связи с окончанием их срока службы.

3 Описание работы с теплосчетчиком.

3.1 Визуальное считывание данных теплосчетчика

Для обеспечения визуального считывания показаний, на передней панели теплосчетчика, предусмотрена кнопка. При нажатии кнопки происходит переключение режимов и просмотр параметров индикации.

Индицируемые теплосчетчиком параметры сгруппированы в три группы:

- 1) текущие значения;
- 2) архивные значения;
- 3) сервисные параметры.

Для облегчения восприятия отображаемой информации на индикации теплосчетчика используются спец.символы. Внешний вид и место положения спец.символов на ЖК-дисплее теплосчетчика показано на рисунке 3.1. Назначение спецсимволов поясняется ниже в этом разделе.

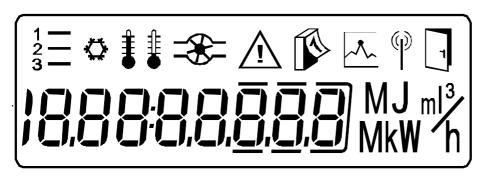


Рисунок 3.1 — Информационные поля ЖК-дисплея теплосчетчика КАРАТ®-Компакт

Полная структура отображаемых параметров теплосчетчика КАРАТ®-Компакт показана на рисунке 3.5.

3.2 Управление теплосчетчиком с помощью кнопки

3.2.1 Отображение номера группы параметров

Номер группы параметров отображается в левом верхнем углу ЖК-дисплея (рисунок 3.2). Все параметры, которые можно просматривать коротким нажатием на кнопку (менее 2 сек.) относятся к одной группе параметров. Все параметры, относящиеся к одной группе, имеют один и тот же индекс.

Рисунок 3.2 – Отображение номера группы параметров на ЖК-дисплее

3.2.2 Отображение подгруппы

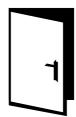


Рисунок 3.3 — Изображение спец.символа «Дверь», обозначающего наличие подгруппы

Параметры со спец.символом «Дверь» (изображение спец. символа показано на рисунке 3.3) имеют подгруппу, т.е. дальнейшие значения скрыты за этим параметром в подгруппе (например, месячные архивы).

3.2.3 Варианты нажатия кнопки

Кнопка теплосчетчика позволяет производить 3 вида нажатия:

- продолжительное нажатие примерно 2 секунды;

н – удержание кнопки как минимум 5 секунд.

3.2.3.1 Переключение на следующий параметр

Краткое нажатие кнопки вызывает смену индицируемого параметра сверху вниз по параметрам одной группы. Последовательность просмотра определяется структурой отображаемых параметров, показанной на рисунке 3.5. Когда будет достигнут последний параметр в группе вы можете, нажав кнопку, перейти на первый параметр в этой же группе (цикл). С помощью номера группы в верхнем левом углу ЖК-дисплея теплосчетчика можно увидеть, параметры какой группы просматриваются в данный момент. Если в течение значительного промежутка времени кнопка не используется (около 2 минут, кроме случаев, особо оговоренных в данном руководстве), индикация теплосчетчика автоматически переключается на отображение первого параметра первой группы (Потребленное количество теплоты, с момента установки теплосчетчика).

3.2.3.2 Просмотр параметров подгруппы

Чтобы просмотреть параметры подгруппы необходимо просматривая на дисплее теплосчетчика параметр со спец.символом «Дверь» нажать кнопку примерно на 2 секунды (рисунок 3.4). Символ «Дверь» в правом верхнем углу дисплея кратковременно исчезнет и появится вновь. Затем отпустите кнопку и на дисплее отобразится первый параметр подгруппы.

Замечание! При использовании продолжительного нажатия не отпускайте кнопку до тех пор, пока символ «Дверь» не появится снова.

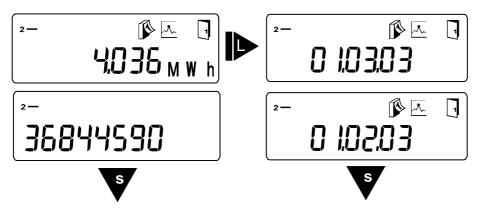


Рисунок 3.4 — Необходимые действия для просмотра параметров подгруппы

Рисунок 3.5 — Структура отображаемых параметров теплосчетчика КАРАТ®-Компакт

Примечание:

Кнопку нажать (S), использовать для пролистывания сверху вниз. После самого нижнего пункта меню следует автоматический переход к верхнему.

Кнопку нажать и удерживать около 2 сек (L), ждать до появления символа двери (сверху справа на дисплее), затем кнопку отпустить. Только тогда меню актуализировано или следует переход в подменю

Кнопку удерживать (Н) до смены уровней или следует возврат из подменю

Количество теплоты накопленное, с мо-мента включения теплосчетчика к указанной дате сохранения

Внимание! Для того что-бы перевести показания теплосчетчика из MW*h в Гкал следует воспользоваться коэффициентом 0,8598. Коэффициент для перевода значения из kW в Гкал/ч равен 0,0008598

Например:

1,42 MW*h равен 1,42*0,8598=1,2209 Гкал

3.2.3.3 Переход к параметрам следующей группы

При удержании кнопки более 5 сек. происходит переход к индикации параметров следующей группы (рисунок 3.6). Индикация автоматически обновляется после этого переключения и вы можете отпустить кнопку. Если просматриваются параметры последней группы (сервисные параметры), то удержание кнопки вызовет переход к параметрам первой группы.

Группа 1

Группа 2

Переход к параметрам следующей группы с помощью удержания кнопки более 5 сек.

Рисунок 3.6 — Необходимые действия для перехода к просмотру параметров следующей группы

3.3 Описание параметров теплосчетчика

3.3.1 Текущие значения

3.3.1.1 Потребленное количество теплоты, с момента установки теплосчетчика

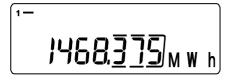


Рисунок 3.7 — Потребленное количество теплоты, с момента у с т а н о в к и теплосчетчика

Значение этого параметра (рисунок 3.7) показывает фактическое потребление количество теплоты. Оно выводится в МВт*ч.

. На этот параметр теплосчетчик автоматически возвращается, если на кнопку не нажимать более 2 минут.

3.3.1.2 Объем теплоносителя

Рисунок 3.8 — Объем теплоносителя

Значение этого параметра (рисунок 3.8) отражает весь объем воды, прошедшей через теплосчетчик с момента его установки и используется для расчета энергии. Его значение редко используется, кроме случаев необходимости определения расхода за относительно короткий период времени.

3.3.1.3 Тест сегментов ЖК-дисплея



Рисунок 3.9 — Тест сегментов ЖК-дисплея Для определения сбоев или постоянного мигания отдельных сегментов ЖК-дисплея при отображении этого параметра (рисунок 3.9) все сегменты циклически включаютсявыключаются. Таким образом, может быть определена безошибочная работа ЖКИ. Это помогает выявить ошибки отображения информации, возникающие при выходе одного сегмента из строя.

3.3.1.4 Текущая температура в подающем трубопроводе

Рисунок 3.10 — Температура в подающем трубопроводе

Температура подачи (рисунок 3.10) в системах отопления, отображается с максимальным разрешением до сотых долей градуса Цельсия (0.01 °C). На этот параметр однозначно указывает соответствующий символ – термометр, показывающий высокую температуру.

3.3.1.5 Текущая температура в обратном трубопроводе

Рисунок 3.11 — Температура в обратном трубопроводе Температура возврата (рисунок 3.11) теплоносителя в системах отопления, отображается с максимальным разрешением до сотых долей градуса Цельсия (0.01 °C). Для отображения этого параметра используется соответствующий символ – термометр, показывающий низкую температуру.

3.3.1.6 Разность температур

Разность температур – основной параметр для вычисления количества потребляемой теплоты (рисунок 3.12). Абсолютные значения температур в

Рисунок 3.12 — Разность температур

подающем и обратном трубопроводах сами по себе играют менее важную роль. Они могут быть использованы для возможного сравнения с контрольными термометрами при запуске системы в эксплуатацию и плановых проверках.

Параметр разности температур обозначается двумя термометрами (показывающими

высокую и низкую температуры) в левом верхнем углу индикатора.

Разрешение индикации, как и в предыдущем случае, составляет одну сотую градуса Цельсия.

3.3.1.7 Текущий расход

Рисунок 3.13 — Текущий расход

Индикация текущего расхода (рисунок 3.13) (предполагаемый объем теплоносителя, который пройдет через теплосчетчик за один час при текущей скорости потока теплоносителя) часто используется при запуске системы как быстрый способ проверки работоспособности теплосчетчика и при возможной регулировке

системы. Время перехода на начальный параметр (потребленное количество теплоты) при отсутствии нажатий на кнопку для этого параметра установлено около 5 минут.

Для целей сбережения элемента питания расчет расхода не производится до момента вывода его на индикацию.

Расчет расхода может расходиться с действительностью. Однако значения этого параметра достаточно для целей регулировки системы.

3.3.1.8 Текущее количество теплоты (тепловая мощность).

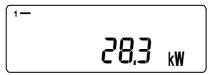


Рисунок 3.14 — Тепловая мощность

Тепловая мощность (рисунок 3.14) рассчитывается непосредственно из расхода. Все замечания сделанные о точности расхода действительны и здесь.

3.3.2 Архивные значения

3.3.2.1 Потребленное количество теплоты, с момента установки теплосчетчика на начало отчетного года



Рисунок 3.15 — Потребленное количество теплоты на начало отчетного года

Перед наступлением даты начала отчетного года (по умолчанию это первое число года – 1 января) теплосчетчик сохраняет накопленное значение потребленного количества теплоты, с момента установки теплосчетчика (рисунок 3.15). Т.е. количество теплоты, накопленное к дате начала отчетного года, записывается в память и заменяет предыдущую имеющуюся там

информацию. Эти данные всегда сохраняются в полночь, например если начало отчетного года равно 1 января, то запись в этот параметр происходит в полночь с 31 декабря на 1 января. При чтении данных и самой даты выводится символ календаря.

3.3.2.2 Дата начала отчетного года

Рисунок 3.16 — Дата начала отчетного года

В течение года счетчик накапливает значение потребленного количества теплоты и затем, по истечении отчетного года, сохраняет накопленное значение в параметре «Потребленное количество теплоты, с момента установки теплосчетчика на начало отчетного года». Это обычно используется для приведения

всех теплосчетчиков на единую расчетную схему с одинаковым периодом считывания данных, вне зависимости от действительной даты считывания. Этот период будет равен ровно одному году. Дата начала отчетного года (рисунок 3.16) индицируется вместе с символом календаря в формате дд.мм.

Дата начала отчетного месяца по-умолчанию 1 января, изменить это значение можно только в заводских условиях, либо заранее по специальному заказу.

3.3.2.3 Потребление за предыдущий отчетный год

Рисунок 3.17 — Потребление за предыдущий отчетный год

Потребленное количество теплоты за предыдущий отчетный год (рисунок 3.17). Если эта дата установлена, как обычно, на 1 января, тогда может быть интерпретировано как потребленное количество теплоты за предыдущий календарный год. Потребление за предыдущий отчетный год обозначается комбинацией символов календаря и турбинки водосчетчика.

3.3.2.4 Потребленное количество на начало месяца

Рисунок 3.18 — Потребленное количество к началу текущего месяца

Количество теплоты потребленное к началу текущего месяца (рисунок 3.18) на дисплее выделен символом календаря и символом статистики. Кроме того, на дисплее присутствует символ двери т.к. за этим параметром скрыта подгруппа параметров архива помесячных значений как минимум за 18 прошедших месяцев

Вывод архивных значений за более ранние месяцы описан далее.

3.3.2.5 Просмотр помесячного архива

В помесячном архиве теплосчетчика доступны для просмотра значения потребленного количества теплоты с начала установки теплосчетчика на момент начала месяца за 18 прошедших месяцев. Значения потребленного количества теплоты с начала установки предваряются датой начала следующего месяца. Иными словами: дате 01.04.03 соответствует количество теплоты, которое было накоплено по март 2003 года включительно (сохранение происходит в полночь при переходе от 31 марта к 1 апреля). Дата выводится первой, и с нее вы можете переключиться на соответствующее значение количества теплоты. В помесячный архив Вы можете попасть из текущего потребления за месяц с помощью продолжительного нажатия кнопки. После перехода к подгруппе параметров архива выводится дата первого числа текущего месяца. Пример архива показан на таблице 3.1.

Таблица 3.1 – Помесячный архив теплосчетчика KAPAT®-Компакт

Дата	Накопленное, с момента включения теплосчетчика, количество теплоты
01.06.04	3,450 MWh
01.05.04	3,200 MWh
01.04.04	2,768 MWh
01.05.03	0,550 MWh

За датой вы найдете потребленное с начала установки по указанною дату количество теплоты. К этому значению можно перейти с помощью продолжительного нажатия. С помощью короткого нажатия можно вернуться к дате. Находясь в подгруппе архива можно переместиться на другой интересующий Вас месяц, перебирая даты с помощью коротких нажатий кнопки. На рисунке 3.19 схематично изображены необходимые операции для работы с архивом теплосчетчика.

Рисунок 3.19 - Просмотр помесячного архива теплосчетчика

3.3.2.6 Заводской номер теплосчетчика

Рисунок 3.20 — Заводской номер теплосчетчика

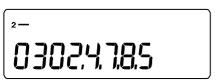


Рисунок 3.21 — Технологический параметр Номер теплосчетчика – это номер, определяемый в процессе производства теплосчетчика и используемый для точной идентификации теплосчетчика (рисунок 3.20).

3.3.2.7 Технологический параметр

Этот параметр является технологическим и его значение может носить произволный характер.

3.3.3 Сервисные параметры

3.3.3.1 Датчики и место установки теплосчетчика

Рисунок 3.22 — Датчики и место установки теплосчетчика Тип температурного датчика, по умолчанию установлен Pt500, и место установки (обратный или подающий трубопровод) могут быть проверены обслуживающим персоналом (рисунок 3.22) . Обратный трубопровод обозначается символом «r», подающий трубопровод – символом «u»

Замечание! Теплосчетчик, предназначенный для установки на обратный трубопровод, нельзя использовать в подающем трубопроводе!

3.3.3.2 Номер типа теплосчетчика

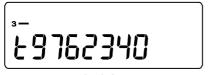


Рисунок 3.23 — Типовое обозначение теплосчетчика

Номер типа изделия (рисунок 3.23) содержит зашифрованные программные установки теплосчетчика. Он может понадобиться в исключительных случаях для запросов от сервисного центра на завод-изготовитель.

3.3.3.3 Технологический параметр

Рисунок 3.24 — Технологический параметр Этот параметр является технологическим и его значение может носить произвольный характер.

3.3.3.4 Текущие время и дата

Параметры времени и даты показаны на рисунке 3.25. Автоматический перевод с летнего на зимнее время не производится.

Рисунок 3.25 – Текущие время и дата

3.3.3.5 Номер версии программного обеспечения теплосчетчика

Рисунок 3.26 — Номер версии программного обеспечения тепло-счетчика

Номер версии (рисунок 3.26) обозначен как S в скобках, за которым следует сам номер. Он используется для определения текущего статуса программы, который в свою очередь информирует о доступности тех или иных функций.

3.3 Сообщения о состоянии теплосчетчика и ошибках

3.3.1 Сообщения о работе теплосчетчика

Сообщения о состоянии теплосчетчика наглядно сообщают об условиях работы вычислителя. Одни условия работы выводятся с помощью символов (таблица 3.2). Другие в свою очередь обозначаются предупреждающим значком треугольной формы, чтобы не перегружать индикацию множеством символов. Соответствующие ошибки или неисправности выведены отдельно в разделе «Сообщения об ошибках»

Таблица 3.2 – Спец.символы отражающие работу теплосчетчика

Символ	Статус	Индикация	Событие∖реакция
	Наличие потока		
<u> </u>	Показывает изменение рабочего состояния, например обнаружение ошибки	Всегда включена	Теплосчетчик зафиксировал определенное состояние. Подробнее см. в разделе «Сообщения об ошибках»
(4)	Передача данных через интерфейс	Только во время пере- дачи данных	
× ×	Аварийная работа	Всегда	Энергия еще выводится и включена вычисляется корректно. Вся другая информация блокирована, и прибор не реагирует на нажатия кнопки. Требуется замена или ремонт прибора!

Во всех случаях, когда предупреждающий треугольник представляет сообщение о состоянии, необходимо сначала проверить, является ли эта проблема постоянной или это временное явление

Замечание! Сообщения о состоянии теплосчетчика приведенные выше в таблице появляются только при отображении параметра «Потребленное количество теплоты, с момента установки теплосчетчика»

3.3.2 Вывод ошибок

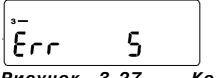


Рисунок 3.27 – Код ошибки теплосчетчика

Когда теплосчетчик обнаруживает признаки изменений условий (например, истечение срока поверки или состояний, свидетельствующих о неисправности счетчика) он их индицирует посредством выдачи сообщения об ошибке в следующем формате: «Err_XXXX». В таблице 3.3 приведено детальное описание возможных кодов

ошибок. Если же зафиксирована неисправность с кодом ошибки более или равным 8000, то она отображается вместо индикации измеренных параметров.

В случаях когда код ошибки менее 8000, появляется предупреждающий треугольник, код ошибки может быть просмотрен в параметре «Код ошибки» (рисунок 3.27). впоследствии найдены в пункте меню Вывод ошибок. В таблице 3.3 также указаны рекомендуемые действия по устранению ошибки.

Таблица 3.3 – Описание кодов ошибок теплосчетчика

Код	Состояние устройства	Рекомендуемые	Место
ошибки		действия	вывода
1и4	Аппаратная неисправность		Строка
2и3	Нарушения в расходомере	ремонт прибора	индикации
100	Устройство в аварийном режиме		
200	Вмешательство в работу прибора	Сообщает о несанкциониро- ванном доступе	
1000	Исчерпан ресурс батареи питания		
2000	Истек срок поверки	Требуется повторная кали- бровка в сер- висном центре	
8000	Контроллер доступа к памяти	Замена или ремонт прибора	Основная индикация.
8001	Ошибка контрольной суммы заголовка памяти	(аппаратная неисправность)	Прибор не работает.
8002	Ошибка контрольной суммы резервной части памяти		
8003	Ошибка контрольной суммы статической памяти		
8004	Ошибка записи во флэш-память		
8005	Ошибка чтения\записи памяти		

Если ошибка устранена, сообщение об ошибке исчезает. Коды ошибок, которые в явном виде отсутствуют в таблице, являются суммой нескольких отдельных кодов (это правило действительно для кодов ошибок менее 8000).

Например: ошибка 1004=ошибка 1000+ошибка 4, но ошибка 8004 - ошибка записи во флэш-память.

3.4 Оптический интерфейс

Рисунок 3.28 — Оптический интерфейс теплосчетчика

Для быстрого и безопасного считывания данных в каждом теплосчетчике предусмотрен оптический интерфейс (опто-порт). Встроенный оптический интерфейс соответствует рекомендациям МЭК 1107. Скорость по оптическому интерфейсу 2400 бод. Место положения оптического интерфейса на корпусе теплосчетчика показано на рисунке 3.28.

Для снатия показаний теплосчетчика чарез оптический порт на компьютер (ноутбук) НПП «Уралтехнология» предлагает оптоголовку RS-232 и программный продукт «КАРАТ-Спринт». Оптоголовка и программа не входят в комплект поставки теплосчетчика и поставляются по отдельному заказу.

Замечание! В момент снятия показаний через оптический порт кнопку теплосчетчика необходимо нажать и удерживать нажатой до окончания передачи данных.

3.5 Интерфейс шины M-bus (опция)

Интерфейс M-bus расширяет возможности для удаленного доступа к данным. Интерфейс соответствует стандарту EN-1434. Максимальная скорость передачи данных у него выше, чем у оптического интерфейса и составляет 9600 бод.

Этот интерфейс не входит в базовый комплект поставки. Интерфейс M-bus является опцией, т.е. должен быть указан при заказе теплосчетчика. В случае заказа теплосчетчика с интерфейсом M-bus, двухпроводный кабель для подключения к шине M-bus поставляется уже подключенным и не подлежит отсоединению без нарушения пломбы изготовителя. Подключение к контактам кабеля произвольное и взаимозаменяемое.

3.6 Дистанционный импульсный выход (опция)

Опционально теплосчетчик может иметь дистанционный выход для передачи на внешние устройства с импульсным числовым входом сигнала о потребленном количестве теплоты. Дистанционный импульсный выход может быть установлен только вместо интерфейса шины M-bus.

Дистанционный выход не входит в базовый комплект поставки. Импульсный выход является опцией, т.е. должен быть указан при заказе теплосчетчика. В случае заказа теплосчетчика с дистанционным импульсным выходом двухпроводный кабель для использования импульсного выхода поставляется уже подключенным и не подлежит отсоединению без нарушения пломбы изготовителя. Форма импульсного сигнала изображена на рисунке 3.29. Подключение производится самостоятельно, согласно рисунку 3.30.

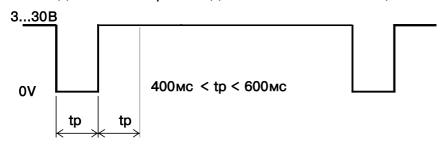


Рисунок 3.29 – Форма импульсного сигнала дистанционного выхода

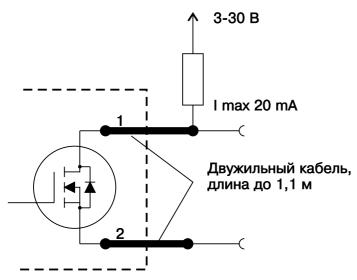


Рисунок 3.30 — Подключение внешних устройств к дистанционному выходу

4 Размещение, монтаж и подготовка к работе

4.1 Общие требования

Теплосчетчик KAPAT®-Компакт устанавливается в отапливаемых помещениях или специальных павильонах с температурой окружающего воздуха от 0 до +50°C, и относительной влажностью не более 80%.

К теплосчетчику должен быть обеспечен свободный доступ для осмотра в любое время года. Место установки счетчика должно гарантировать его эксплуатацию без возможных механических повреждений.

Перед монтажом теплосчетчика необходимо выполнить следующие требования:

- теплосчетчик извлечь из упаковочной коробки непосредственно перед его монтажом;
- после освобождения теплосчетчика от упаковки следует произвести его внешний осмотр.

При внешнем осмотре теплосчетчика проверяется:

- комплектность поставки;
- отсутствие видимых механических повреждений;
- наличие оттисков клейма поверителя и изготовителя на пломбах и в паспортах приборов;
- соответствие заводских номеров указанным в паспорте.

4.2 Эксплуатационные ограничения

Установка теплосчетчика в затапливаемых, в холодных помещениях при температуре менее 0°С, и в помещениях с влажностью более 80% не допускается. Не следует располагать теплосчетчик в непосредственной близости от осветительных трубок, переключательных шкафов или прочих источников электромагнитных полей (двигатели, насосы и т.п.). Напряженность магнитного поля около теплосчетчика не должна превышать 400 А/м, как правило достаточно выдержать дистанцию 1 м от источника магнитного поля до места установки теплосчетчика. Исходящие из счетчика провода не следует прокладывать параллельно токоведущим линиям (220 В) – расстояние минимум 0,2 м.

При монтаже на участках, в которых возможно неполное заполнение жидкостью трубопровода (опускные участки или участки, расположенные в наивысшей точке трубопровода), не гарантируются показатели точности, указанные в пункте 2.4.

4.3 Рекомендации для проектирования

Место для монтажа должно быть выбрано таким образом, чтобы исключить скопление воздуха в проточной части теплосчетчика KAPAT®-Компакт, а также в прилегающих к нему участках трубопровода.

Для обеспечения стабильной работы, типоразмер теплосчетчика рекомендуется выбирать с учетом следующих требований:

- расход жидкости в трубопроводе не должен превышать максимального расхода, указанного в пункте 2.3;
- в том случае, если измеряемая среда содержит механические примеси, рекомендуется устанавливать магнитно-механические фильтры;
- место установки теплосчетчика (подающий или обратный трубопровод)
 должно соответствовать типу устанавливаемого теплосчетчика.

4.4 Монтаж теплосчетчика

Монтаж теплосчетчика КАРАТТ-Компакт следует производить на трубопроводе в удобном для снятия показаний месте, соответствующем условиям эксплуатации.

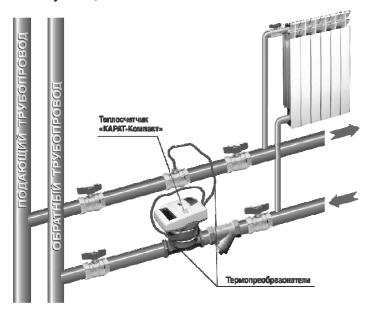


Рисунок 4.1 — Схема монтажа теплосчетчика КАРАТ®-Компакт в обратный трубопровод с установкой термопреобразователя в тройник с использованием гильзы

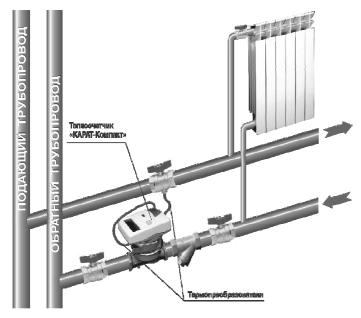


Рисунок 4.2 — Схема монтажа теплосчетчика КАРАТ®-Компакт в обратный трубопровод с установкой термопреобразователя в шаровый кран

До и после места установки теплосчетчика рекомендуется установить запорную арматуру.

После запорной арматуры перед проточной частью теплосчетчика рекомендуется устанавливать фильтры.

Примеры монтажа теплосчетчика на обратный трубопровод показаны на рисунках 4.1 и 4.2.

Термопреобразователь может быть установлен либо:

- в тройник с использованием гильзы (рис. 4.1);
- в специальный шаровый кран с отверстием под термопреобразователь (рис. 4.2).

При нарушении условий монтажа появляется дополнительная погрешность теплосчетчика.

В случае если после монтажа теплосчетчика предполагается проведение монтажных, строительных или иных работ (во время которых возможно повреждение измерительного патрона и вычислителя), рекомендуется проводить монтаж теплосчетчика поэтапно:

- на первом этапе монтируется проточная часть и закрывается запорной крышкой, не входящей в компект поставки теплосчетчика, с уплотнительной прокладкой;
- на последнем этапе, после окончания опасных для теплосчетчика работ, произвести установку измерительного патрона с вычислителем.

4.4.1 Монтаж проточной части теплосчетчика

При монтаже проточной части теплосчетчика должны быть соблюдены следующие обязательные условия:

- теплосчетчик допускается монтировать и на горизонтальных и на вертикальных участках трубопровода, ЖК-дисплеем вычислителя вверх;
- установка осуществляется таким образом, чтобы проточная часть теплосчетчика всегда была заполнена водой;
- проточная часть теплосчетчика должна монтироваться с использованием комплектов резьбовых соединителей, входящих в комплект поставки теплосчетчика (обеспечивающие необходимые прямые участки);
- проточная часть теплосчетчика должна быть расположена так, чтобы направление, указанное стрелкой на корпусе проточной части, совпадало с направлением потока воды в трубопроводе;
- перед установкой проточной части теплосчетчика трубопровод обязательно промыть, чтобы удалить из него загрязнения;
- присоединение проточной части теплосчетчика к трубопроводу и измерительного патрона к проточной части должно быть плотным, без перекосов, с тем, чтобы не было протечек при давлении до 1,6 МПа (16 кгс/см²)
- присоединение проточной части теплосчетчика к трубопроводу с большим или меньшим диаметром, чем диаметр условного прохода счетчика производится при помощи переходников;
- на случай ремонта или замены теплосчетчика перед прямым участком до проточной части и после нее устанавливается запорная арматура.

4.4.2 Монтаж измерительного патрона с вычислителем

При монтаже измерительного патрона с вычислителем в проточную часть следует соблюдать следующие правила:

- перед установкой измерительного патрона требуется проверить отсутствие давления и воды в системе отопления. Кроме того, проконтролируйте, что запорная арматура перед и после проточной части закрыта;
 - перед установкой проверьте целостность измерительного патрона и проточной части;
 - при монтаже используйте только новые прокладки или уплотнители;
 - удалите запорную крышку и старую прокладку;
 - очистив присоединительные части теплосчетчика, вставьте новую уплотнительную прокладку в проточную часть плоской стороной вверх;
 - вставьте измерительный патрон и затяните до упора с использованием разводного ключа.

Не допускается установка теплосчетчика KAPAT®-Компакт ЖК-дисплем вниз.

4.4.3 Монтаж термопреобразователей

Термопреобразователи устанавливаются на подающем и обратном трубопроводах, в соответствии с маркировкой.

Подающему трубопроводу соответствует термопреобразователь с красным

шильдиком («горячий»), обратному трубопроводу - с синим или чёрным шильдиком («холодный»).

Один из термопреобразователей поставляется смонтированным в корпус измерительного патрона в соответствии с исполнением теплосчетчика:

- обратный трубопровод термопреобразователь с синим (черным) шильдиком;
- подающий трубопровод термопреобразователь с красным шильдиком.

Второй термопреобразователь может монтироваться двумя способами:

- термопреобразователь (**1**) устанавливается в гильзу (**2**), вкручиваемую в стандартный тройник (**3**) (рисунок 4.3);

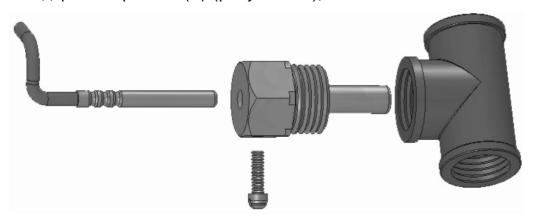
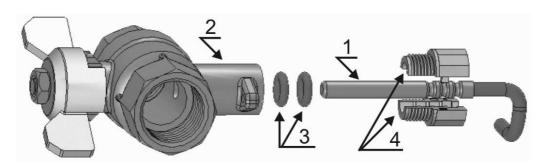



Рисунок 4.3 – Вариант установки термосопротивления в тройник

– термопреобразователь (**1**) монтируется в специальный шаровый кран (**2**) с отверстием под термопреобразователь (рисунок 4.4).

Рисунок 4.4 – Вариант установки термосопротивления в шаровый кран

Монтаж термопреобразователя в шаровый кран производится следующим образом:

- в установочный карман шарового крана (**2**) помещают два уплотнительных кольца (**3**);
- термопреобразователь (**1**) помещают в пластмассовый адаптор (**4**), состоящий из двух частей, желобки на термопреобразователе должны совпасть с желобками на адапторе (рисунок 4.5);
 - термопреобразователь с адаптером помещают в установочный карман и затягивают до упора.

Перед установкой термопреобразователя в гильзу желательно ввести небольшое количество теплопроводящей пасты КПТ-8, или вещества с аналогичными свойствами.

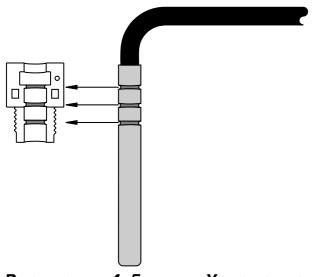


Рисунок 4.5 — Установка термопреобразователя в адаптер

Термопреобразователь после монтажа должен перекрывать минимум две трети диаметра трубопровода.

После монтажа термопреобразователя, место их установки на трубопровод желательно теплоизолировать (например, скорлупами из вспененного полиэтилена).

После установки, опломбируйте термопреобразователи набором для пломбирования из комплекта поставки.

4.4.4 Пуск системы.

После пуска воды через установленный теплосчетчика следует проверить следующие моменты:

- после пуска системы проверьте плотность соединений теплосчетчика (нет ли утечек воды);
- проверьте, что теплосчетчик показывает наличие потока и оцените по текущим параметрам правильность показаний теплосчетчика (объем и температура в подающем и обратном трубопроводах);
- опломбируйте место соединения измерительного патрона и проточной части набором для пломбирования из комплекта поставки.

5 Техническое обслуживание

Техническое обслуживание теплосчетчика KAPAT®-Компакт заключается в периодическом осмотре внешнего состояния приборов, входящих в его состав, состояния электрических соединений, контроле напряжения элементов питания и, при необходимости, их замене.

Техническое обслуживание рекомендуется проводить не реже 1 раза в месяц. Ремонт и замена элементов питания производится силами предприятияизготовителя или его полномочными представителями.

При отправке теплосчетчика в ремонт и для гарантийной замены, вместе с прибором должны быть отправлены:

- руководство по эксплуатации;
- акт освидетельствования с описанием характера неисправности, её проявлениях.

6 Маркировка и пломбирование

Теплосчетчик KAPAT®-Компакт имеет следующую маркировку:

- на наклейке, расположенной на боковой поверхности корпуса серийный номер прибора, класс счетчика по ГОСТ Р 50193 и ГОСТ 6651, условный диаметр, исполнение прибора и номинальный расход;
- на передней панели наименование прибора «Теплосчетчик КАРАТ®-Компакт», логотип предприятия-изготовителя и знак Государственного реестра средств измерений;

Пломбирование производится с целью подтверждения невмешательства в работу поверенного и запущенного в эксплуатацию теплосчетчика. Для пломбирования теплосчетчика используются места, предусмотренные конструкцией теплосчетчика. Пломбирование производится заинтересованной стороной при пуске счётчика в эксплуатацию.

Конструкцией теплосчетчика предусмотрены следующие варианты пломбирования:

- пломбой изготовителя защищается от вскрытия основная плата вычислителя, находящаяся в верхней части корпуса. Пломба, изготавливаемая из разрушающегося пластика, соединяет две части корпуса;
- пломбой энергоснабжающей организации пломбируется место соединения измерительного патрона с проточной частью. Для пломбирования предусмотрены отверстия на крепёжных выступах корпуса;
- пломбой энергоснабжающей организации пломбируется место монтажа термопреобразователя в трубопровод. Для пломбирования предусмотрены отверствия на корпусе защитной гильзы термопреобразователя.

7 Упаковка

Теплосчетчик КАРАТ®-Компакт упаковывается в коробку из гофрокартона. Документация на теплосчетчик герметично упаковывается в пакет из полиэтиленовой или поливинилхлоридной пленки по ГОСТ 10354, толщиной от 0.13 до 0.30 мм, и помещается в упаковочную коробку теплосчетчика. В эту же коробку допускается помещать монтажную арматуру, не входящую в комплект поставки теплосчетчика.

8 Транспортировка и хранение

Теплосчетчик KAPAT®-Компакт в упаковке предприятия–изготовителя допускается транспортировать на любые расстояния при соблюдении правил, утвержденных транспортными министерствами и при соблюдении следующих требований:

- транспортирование по железной дороге должно производиться в крытых чистых вагонах;
- при перевозке открытым автотранспортом ящики с приборами должны быть покрыты брезентом;
- при перевозке воздушным транспортом ящики с приборами должны размещаться в герметичных отапливаемых отсеках;
- при перевозке водным транспортом ящики с приборами должны размещаться в трюме.
- рпорпорпораомтмоирар

Теплосчетчик KAPAT®-Компакт в транспортной упаковке является:

- прочными при транспортировании любым видом транспорта на любые расстояния. При этом они выдерживают без повреждений механические воздействия с ускорением 30 м/с² при частоте ударов от 80 до 120 в минуту в течение 2,5 часа или 1500 ударов с тем же ускорением;
- тепло (холодно-) прочными при воздействии повышенной (пониженной) температуры +55°C (-50°C);
- влагопрочными при воздействии повышенной влажности до 95% при температуре +35°C.

В помещении для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию изделий.

Расстановка и крепление ящиков с изделиями на транспортных средствах должны обеспечивать устойчивое положение при складировании и в пути, отсутствие смещений и ударов друг о друга.

Условия хранения для законсервированных и упакованных изделий должны соответствовать условиям хранения 3 по ГОСТ 15150.

Товаросопроводительная и эксплуатационная документация хранится вместе с приборами.

9 Поверка

Пломба или этикетка с годом первой поверки находится на боковой стороне теплосчетчика. Поверка теплосчетчика производится по Методике поверки МП-48-221-2004.

При несанкционированном вскрытии прибора срок поверки истекает. Межповерочный интервал составляет 5 лет.

10 Гарантийные обязательства

- 1. Гарантийный срок на теплосчетчик KAPAT®-Компакт один год со дня продажи.
- 2. Предприятие-изготовитель гарантирует соответствие прибора требованиям конструкторской документации при соблюдении эксплуатирующей и обслуживающей организациями указаний по эксплуатации.
- 3. В течение гарантийного срока производитель бесплатно устраняет дефекты оборудования путем его ремонта или замены дефектных частей и материалов на новые при условии, что дефект возник по вине производителя.
- 4. Гарантия утрачивается, если теплосчетчик ремонтировался или модифицировался персоналом, не имеющим полномочий от производителя, а также на приборы с нарушенными пломбами изготовителя.
- 5. Производитель не отвечает за косвенные убытки, связанные с выходом из строя и ремонтом оборудования.
- 6. Срок выполнения гарантийного ремонта теплосчетчика, как правило, не должен превышать 20 рабочих дней со дня доставки теплосчетчика в сервисный центр.
- 7. Гарантия не распространяется на приборы с дефектами или неисправностями, вызванными:
 - воздействием окружающей среды (дождь, снег, молния, и т.п.) или наступлением форс-мажорных обстоятельств (пожар, наводнения, землятресения и др.);
 - несоблюдением правил транспортировки и условий хранения, технических требований по размещению и эксплуатации оборудования;
 - неправильными действиями обслуживающего персонала, использования прибора не по назначению, нарушением правил хранения, несоблюдения инструкций по эксплуатации.

Кроме того, гарантия не распространяется на приборы со следующими дефектами:

- разрушение жидкокристаллического индикатора вычислителя вследствие воздействия температуры ниже минус 25 °C;
- пробой входных цепей теплосчетчика вследствие воздействия электрического потенциала свыше 4 В;
- пробой входных цепей теплосчетчика вследствие воздействия статического электричества свыше 8 кВ;
- следы механического, термического или другого воздействия на внутренних частях теплосчетчика;
- одновременный выход из строя более двух элементов измерительных цепей теплосчетчика.

ПРИЛОЖЕНИЕ А. Изображение сертификата о внесении в государственный реестр средств измерений РФ теплосчетчика КАРАТ®-Компакт

ПРИЛОЖЕНИЕ Б. Изображение сертификата о признании утверждения типа средства измерения теплосчетчики КАРАТ®-Компакт на территории республики Казахстан.

КОМИТЕТ ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ МИНИСТЕРСТВА ИНДУСТРИИ И ТОРГОВЛИ РЕСПУБЛИКИ КАЗАХСТАН

СЕРТИФИКАТ № 2630

о признании утверждения типа средств измерений

Зарегистрирован в Реестре государственной системы обеспечения единства измерений Республики Казахстан «27» января 2006 г. за N KZ.02.03.01293-2006/28112-04 Действителен до «01» декабря 2009 г.

Настоящий сертификат удостоверяет, что тип

теплосчетчиков

наименование средства измерений

обозначение типа

«КАРАТ-Компакт»

производимых

ООО НПП «УРАЛТЕХНОЛОГИЯ»

наименование производителя

г. Екатеринбург

территориальное место расположение производства

допущен к применению и импорту в Республике(у) Казахстан на основании признания результатов испытаний и утверждения данного типа, проведенных

Ростехрегулированием

наименование национального органа по метрологии страны импортера

Заместитель Председателя

М.П.

Lours

Т. Момышев

000548

ПРИЛОЖЕНИЕ В. Изображение сертификата о признании утверждения типа средства измерения теплосчетчики KAPAT®-Компакт на территории республики Беларусь.

КОМИТЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ ПРИ СОВЕТЕ МИНИСТРОВ РЕСПУБЛИКИ БЕЛАРУСЬ

COMMITTEE FOR STANDARDIZATION, METROLOGY AND CERTIFICATION **UNDER COUNCIL OF MINISTERS** OF THE REPUBLIC OF BELARUS

СЕРТИФИКАТ

ОБ УТВЕРЖДЕНИИ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

PATTERN APPROVAL CERTIFICATE OF MEASURING INSTRUMENT

номер сертификата: 3856

ДЕЙСТВИТЕЛЕН ДО:

01 декабря 2009 г.

Настоящий сертификат удостоверяет, что на основании решения НТК по метрологии (протокол № 03-2006 от 30 марта 2006 г.) утвержден тип

теплосчетчики Карат-Компакт,

ООО НПП "Уралтехнология", г. Екатеринбург, Российская Федерация (RU),

который зарегистрирован в Государственном реестре средств измерений под номером РБ 03 10 2873 06 и допушен к применению в Республике Беларусь.

Описание типа средства измерений приведено в приложении и является неотъемлемой частью настоящего сертификата.

Председатель Комитета

В.Н. Корешков 30 марта 2006 г.

20

620102, г. Екатеринбург, ул. Ясная, 226; тел.: (343) 2222-307, 375-89-77, факс: 375-89-88; E-mail: uraltech@uraltech.ru