РЕГУЛЯТОР ТЕМПЕРАТУРЫ ВОДЫ ЖИДКОСТНОЙ «КОРАЛ РТВЖ-К» И ЕГО МОДИФИКАЦИИ

Руководство по эксплуатации и паспорт РТВЖ-К-16. 00РЭ

г.Екатеринбург 2006 г.

1. Назначение

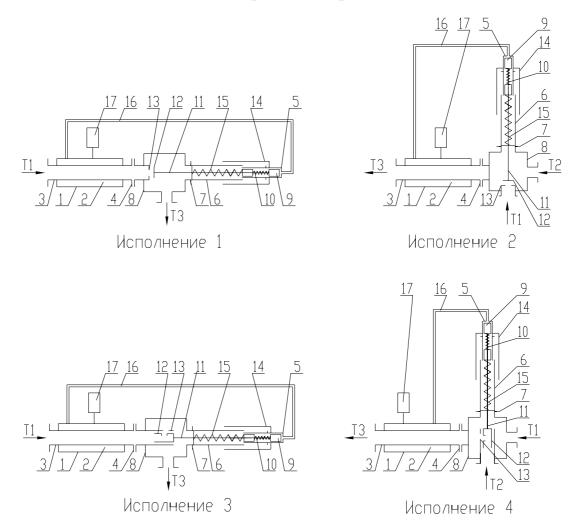
Регулятор температуры воды жидкостной с предохранительным устройством РТВЖ-К (в дальнейшем регулятор) предназначен для автоматического поддержания температуры горячего водоснабжения (в дальнейшем ГВС) (исполнения 1 и 2), температуры обратной воды в системах приточной вентиляции (исполнение 1 и 2), в системах охлаждения технологического оборудования (исполнения 3 и 4).

В первых двух случаях (исполнение 1 и 2) установка регулятора позволяет уменьшить расход тепловой энергии путем снижения расхода теплоносителя, а в последнем случае (исполнение 3 и 4) стабилизировать температурный режим технологического оборудования и снизить расход охлаждающей воды.

Регулятор рекомендуется применять в системах ГВС и приточной вентиляции жилых, административных и производственных зданий, системах охлаждения технологического оборудования в соответствии с рекомендованными в настоящем руководстве схемами.

Применение регуляторов РТВЖ-К в схемах, не предусмотренных данным руководством, необходимо обосновать проектным решением.

ПРИМЕЧАНИЕ: При изменении давления на входе в регулятор более чем на 15% возможны изменения температуры регулируемой воды, в этом случае следует установить регулятор давления.


2. Технические характеристики

2.1.	Диаметр условного прохода Ду, мм	25	50	100
2.2.	Давление рабочей среды Ру, МПа (кгс/см ²)	1,6 (16)	1,6 (16)	1,6(16)
2.3.	Условная пропускная способность Kvy. м ³ /	ч 9	20	80
2.4.	Минимальный расход рабочей среды, M^3/V	2,7	6	24
2.5.	Рабочая среда	вода	вода	вода
2.6.	Максимальная температура воды на входе,	°C 150	150	150
2.7.	Пределы настройки, °С	2090	2090	2090
2.8.	Погрешности настройки, °С	$\pm 1,5$	$\pm 1,5$	$\pm 1,5$
2.9.	Максимальный перепад давления на			
клапан	e, МПа, $(\kappa \Gamma c/cm^2)$	0,6(6)	0,6(6)	0,6(6)
2.10.	Температура окружающей среды, °С	540	540	540
2.11.	Максимальная относительная влажность, %	6 90	90	90
2.12.	Масса не более, кг	23	30	80
ПРИМЕЧАНИЕ: Для регулятора с температурой воды на входе более 115°C				
при заказе требуется указание фактической температуры.				

3. Комплект поставки

- 3.1. Регулятор РТВЖ-К_____
- 3.2. Руководство по эксплуатации и паспорт РТВЖ-К-16. 00 РЭ

4. Устройство и работа

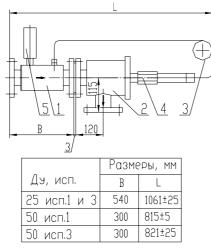
Рисунок 1

- 4.1. Регулятор состоит из двух конструктивных узлов: термосистемы и регулирующего органа, соединенных дистанционным капилляром 16 (Рис.1)
- 4.1.1. Термосистема 1 состоит из герметичного термобаллона, заполненного рабочей жидкостью 2, расположенного снаружи отрезка трубы 3 с фланцами 4 по концам, устройства (клапана) предохранительного 17. Устройство предохранительное предназначено для снижения пиковых давлений в термосистеме.
- 4.1.2. Регулирующий орган состоит из гидроцилиндра 5, движущегося внутри стойки 6, приваренной к фланцу 7, и закреплен на корпусе 8. Поршень гидроцилиндра 9 через демпфер 10, шток 11 связан с клапаном 12. Седло клапана 13 встроено В корпус. Положение гидроцилиндра относительно седла регулируется настроечной гайкой 14. Гайка при заворачивании упирается в буртик гидроцилиндра 5 и перемещает его внутрь стойки 6. При отворачивании гайки 14 под действием возвратной пружины 15 гидроцилиндр 5 выдвигается из стойки 6.

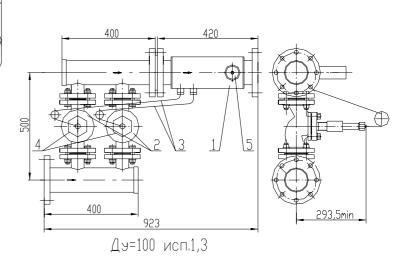
- 4.1.3. Устройство предохранительное состоит из гидроцилиндра и пневмоцилиндра, поршни которых смонтированы на общем штоке. Устройство закреплено с помощью резьбового соединения через прокладку на корпусе термобаллона.
- 4.1.4 Места присоединения капилляра, устройства предохранительного запломбированы (резьба в этих местах залита лаком или краской).
- 4.2. Принцип работы регулятора основан на изменении объема жидкости в термобаллоне при изменении регулируемой температуры. Изменение объема вызывает подачу или отток жидкости через капилляр в исполнительный гидроцилиндр. Поршень гидроцилиндра через шток, перемещает клапан относительно неподвижного седла, что изменяет расход воды через регулятор.
- 4.3. Регулятор РТВЖ-К Исп.3 и 4 (рис.1) с увеличением температуры увеличивает расход. Регулятор РТВЖ-К Исп.1 и 2 (рис.1) с увеличением температуры уменьшает расход регулируемой горячей воды.
- 4.4. Подбор РТВЖ-К проводить в соответствии с диаграммой расхода для воды (см. приложение).

5. Размещение и монтаж

- 5.1. Габаритные и присоединительные размеры регуляторов указаны на рисунке 2. ВНИМАНИЕ! В тепловых пунктах регулятор допускается устанавливать без обводного трубопровода, но при этом усложняется процесс настройки его в момент запуска. ВНИМАНИЕ! При изменении давления на входе в РТВЖ более чем на 15%, возможны изменения температуры регулируемой воды. В этом случае следует устанавливать регулятор давления.
- ВНИМАНИЕ! Запрещается устанавливать регулятор в системах, где расход ГВС менее минимального расхода рабочей среды (см. п.2.4.).
- 5.2. Положение термосистемы и регулирующего органа может быть любым в зависимости от удобства обслуживания и условий монтажа.
- 5.3. Термосистему установить там, где необходимо соблюдать температуру процесса, и на минимальном расстоянии от ТО (БР или КП).
- 5.4. Возможны два типа монтажа регулятора: когда термосистема механически соединена с регулирующим органом и когда термосистема разнесена с регулирующим органом так, что они установлены на расстоянии до 2-х метров на разных трубах.


ВНИМАНИЕ! Для варианта установки регулятора с разнесенными регулирующим органом и термосистемой РТВЖ-К изготавливается по специальному заказу с указанием расстояния разноса.

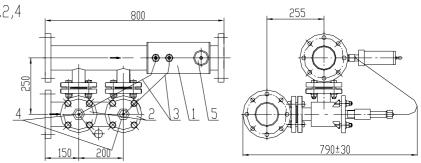
- 5.5. Термометр установить как можно ближе к термосистеме.
- 5.6. Регулировочную гайку вывернуть так, чтобы гидроцилиндр полностью выдвинулся наружу.


ВНИМАНИЕ! До установки и регулировки термосистему беречь от нагревания выше 50°C.

ВНИМАНИЕ! Капилляр и индикатор беречь от повреждения.

5.7. Примеры установки регулятора приведены на рисунках 3...7.

Ды=25 исп.1,3 и Ды=50 исп.1,3



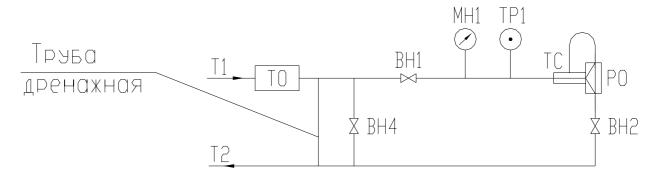
5 1 3 2 4

_	Размеры, мм	
Дэ, исп.	В	L
25 исп.2 и 4	540	773
50 исп.2 и 4	300	533

800 2 3 1 5 400 ACT.2

Ду=25 исп.2,4 и Ду=50исп.2,4

Ду=100 исп.4


Условные обозначения:

- 1-Термосистема
- 2-Регулирующий орган
- 3-Капилляр
- 4-Регулировочная гайка
- 5-Клапан предохранительный

Рисунок 2

5.7.1. Рисунок 3. Установка регулятора в системе охлаждения технологического оборудования. Применен регулятор РТВЖ-К исполнения3. С увеличением температуры увеличивается расход охлаждающей воды.

ВНИМАНИЕ! В некоторых случаях, по технологическим регламентам, после теплообменников (печей) устанавливается дренажная труба без вентилей, расход воды через которую составляет 20% от общего расхода воды на охлаждение.

Рисунок 3

5.7.2. Рисунок 4. Установка регулятора в системе закрытого водоснабжения. С увеличением температуры отработавшего теплоносителя уменьшается расход теплоносителя — горячей воды. Температура ГВС остается постоянной.

Установку регулятора РТВЖ-К (Исп.1) в системе приточной вентиляции производить по схеме (Рис.3), исключив из нее дренажную трубу.

ВНИМАНИЕ! При монтаже нескольких калориферов в одной системе приточной вентиляции регулятор РТВЖ-К должен устанавливаться на каждый калорифер.

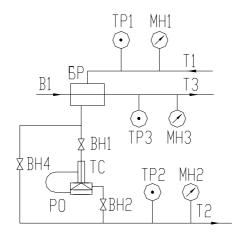
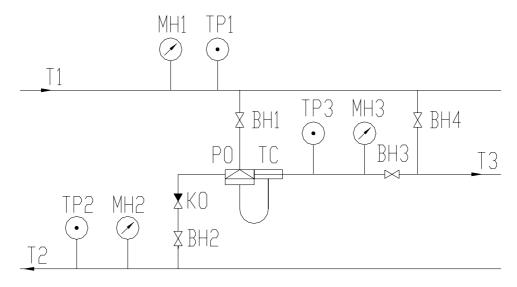



Рисунок 4

5.7.3. Рисунок 5. Установка регулятора в системе открытого водоснабжения. Использован трехходовой РТВЖ-К Исп.2. С увеличением температуры ГВС уменьшается подача горячей воды на подмешивание, в результате снижается расход горячей воды, при этом температура ГВС остается постоянной.

Рисунок 5

5.7.4. Рисунок 6. Вариант установки регулятора с разнесенными регулирующим органом и термосистемой- датчиком (исполнение 1). В системе закрытого водоснабжения они установлены на разных магистралях. Применен регулятор РТВЖ-К исполнения 1. С увеличением температуры ГВС уменьшается расход горячей воды- теплоносителя, поступающего в водонагревательный бойлер или калорифер.

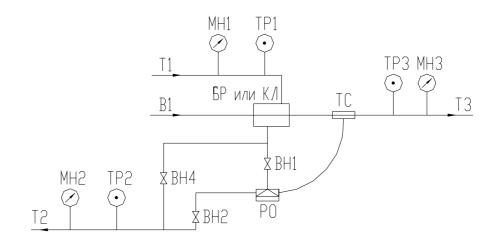


Рисунок 6

5.7.5. Рисунок 7. Установка регулятора в системе охлаждения технологического оборудования. Применен регулятор РТВЖ-К исполнения4. С увеличением температуры увеличивается расход охлаждающей воды.

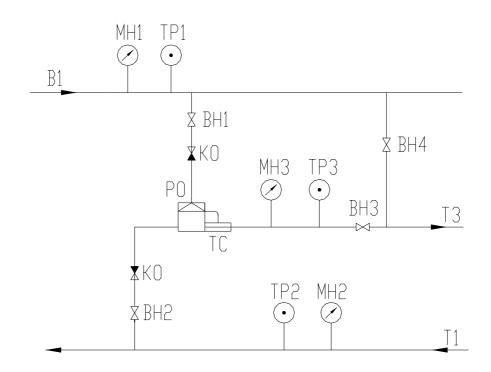


Рисунок 7

Обозначения в схемах:

ВН1...ВН4 - вентили

МН1...МН3 –манометры;

ТР1...ТР3 -термометры;

ТО -теплообменник;

КО –клапан обратный;

ТС -термосистема (датчик) регулятора;

РО –регулирующий орган;

БР –бойлер;

КЛ –калорифер;

Т1 –подвод горячей воды;

Т2 – отвод обратной воды;

Т3 – горячее водоснабжение;

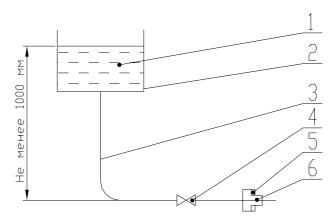
В1 –подвод холодной воды.

6. Настройка и работа

6.1. Ознакомиться с настоящим руководством.

- 6.2. Проверить необходимые условия для правильной регулировки и работы.
- 6.2.1. Правильно выбрать место установки.
- 6.2.2. Произвести обвязку точно по одной из схем раздела 5.
- 6.2.3. Четко представлять функциональное предназначение регулятора.
- 6.2.4. Знать конструкцию регулятора и принцип его работы.
- 6.2.5. Выполнять операции в строгом соответствии с разделом 6.
- 6.2.6. Регулировку проводить при наличии разбора ГВС.
- 6.3. Пустить максимальный поток воды через обводную линию (ВН4) при закрытых вентилях (ВН1...ВН3) регулятора (рисунок 3...7).
- 6.4. Вывернуть (против часовой стрелки) настроечную гайку 4 (рисунок 2) до положения, при котором гидроцилиндр максимально выдвинут.
- 6.5. Пустить весь поток воды через регулятор, для чего открыть вентили ВН1...ВН3 и закрыть вентиль ВН4 на обводной линии. Возможные протечки воды по фланцам устранить затягиванием крепежа.
 - 6.6. Через 10 минут по контрольному термометру измерить температуру.
- 6.6.1. Если температура слишком высокая (для исп.1 и 2), или низкая (для исп.3 и 4), то ввернуть (по часовой стрелке) регулировочную гайку 4 (рисунок 2) на 5 оборотов. Повторить п.6.6. и далее до достижения требуемой температуры.
- 6.7. Через 1 час проверить температуру на контрольном термометре. При необходимости подрегулировать температуру. Поворот регулировочной гайки на 1 оборот изменяет регулируемую температуру приблизительно на 2 градуса.
- 6.8. В дальнейшем регулятор будет автоматически поддерживать температуру, которую можно контролировать по термометру. В качестве контрольного термометра можно использовать легкий переносной контактный термометр типа ТК-5.03, который можно приобрести в ЗАО УЭСК «КОРАЛ» тел. (343) 334-53-64, 620017, г.Екатеринбург, ул. Турбинная, 7.

7. Меры безопасности


- 7.1. Источником опасности при эксплуатации и монтаже регулятора является регулируемая среда и рабочая жидкость, находящаяся под давлением.
- 7.2. Безопасность эксплуатации обеспечивается прочностью и герметичностью корпуса термосистемы и гидроцилиндра регулирующего органа.
- 7.3. Монтаж и ремонт регулятора должны проводиться при полном отсутствии давления во входных и выходных трубопроводах.

ВНИМАНИЕ! Запрещается использование регулятора при несоблюдении требований раздела 2.

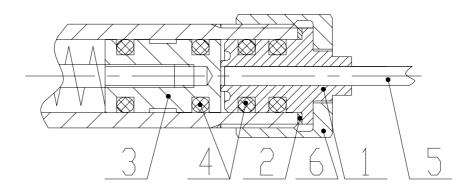
8. Техническое обслуживание и ремонт

- 8.1. Обслуживание регулятора в процессе эксплуатации сводится к периодическим осмотрам, техническому обслуживанию и текущему ремонту.
- 8.2. Периодический осмотр производить не реже одного раза в неделю, при этом проверить стабильность и точность поддержания заданной температуры. Отклонение от допустимых пределов свидетельствует о наличии неисправности.
- 8.3. Техобслуживание проводится один раз в квартал. При проверке очистить подводящие линии от шлака и солевых отложений, изменением величины командного давления переместить клапан. Для этого подвигать гидроцилиндр вращением регулировочной гайки на 5 оборотов в обе стороны относительно рабочего положения, с последующим возвращением в первоначальное состояние. Перемещение клапана можно проконтролировать по изменению температуры на контрольном термометре.
- 8.4. Текущий ремонт всех узлов и деталей проводить один раз в год. ВНИМАНИЕ! Ремонт регулятора проводить при полном отсутствии избыточного давления теплоносителя во входных и выходных трубопроводах!
- 8.5. При отключении регулятора на межотопительный период следует вывернуть гайку до упора.
- 8.6. При включении прибора с началом отопительного сезона следует настроить регулятор (см. раздел 6).
 - 8.7. Методика заливки рабочей жидкости.
 - 8.7.1. Отвернуть предохранительное устройство.
- 8.7.2. К термосистеме на втулку предохранительного устройства герметично присоединить штуцер заливного устройства.
- 8.7.3. Отсоединить от термосистемы капилляр и повернуть втулку капилляра вверх. Ось термосистемы должна иметь уклон 1...2° от втулки капилляра.
- 8.7.4. Подавать рабочую жидкость через заливное устройство до тех пор, пока она не потечет через свободный конец капилляра.
- 8.7.5. Установить цилиндр регулирующего органа вертикально вверх. Втулка присоединения капилляра должна быть вверху.
- 8.7.6. Присоединить свободный конец капилляра (из которого течет рабочая жидкость) к цилиндру рабочего органа.
- 8.7.7. Повернуть термосистему так, чтобы втулка предохранительного устройства оказалась сверху, а ось термосистемы получила наклон $1...2^{\circ}$ от нее.
- 8.7.8.Отвернуть штуцер заливного устройства. Перекрыть кран заливного устройства.
- 8.7.9. Вручную долить в отверстие втулки для установки предохранительного устройства рабочую жидкость до края.
 - 8.7.10. Установить предохранительное устройство.

- 8.7.11. Нагреть термосистему на 20...25°C и проверить герметичность соединений. В случае протечки подтянуть все соединения и повторить процесс заправки.
- 8.7.12. Схема заливного устройства изображено на рисунке 8. ВНИМАНИЕ! Заливку рабочей жидкости проводить при температуре окружающего воздуха 10...20°С.

- 1-Рабочая жидкость
- 2-Емкость
- 3-Шланг
- 4-Кран
- 5-Шайба уплотнительная
- 6-Штуцер с резьбой М27х1

Рисунок 8


8.8. Перечень, причины и способы устранения неисправностей

No	Вид неисправности	Причина	Способы устранения
Π/Π	_		неисправностей
1	Заданная	Упало или	
	температура на	слишком	
	контрольном	возросло	
	термометре	давление в	
	отклонилась от	термосистеме.	
	установленной.		
	1.1. Температура		Ввернуть (исп.1 и 2) или
	выше		вывернуть (исп.3 и 4)
	установленной		регулировочную гайку на 5
	нормы.		оборотов. Через 10 минут по
			контрольному термометру
			проверить температуру и
			далее закручивать
			регулировочную гайку до
			достижения требуемой
			температуры

	1.2.Температура		Проверить нет ли утечки
	ниже установленной		рабочей жидкости из
	нормы.		термосистемы через штуцера
	пориы.		капилляра. Если утечки нет,
			то отвернуть регулировочную
			гайку (против часовой
			стрелки) на необходимое
			число оборотов (каждый
			поворот регулировочной
			гайки на 1 оборот изменяет
			температуру приблизительно
			на 2°С). Откручивать гайку до
			достижения требуемой
			температуры. Проверить
			температуру на входе Т1.
			Примечание: температура на
			выходе Т3 не может быть
			больше температуры Т1 на
			входе.
2	Утечка рабочей		При доливке (заливке)
	жидкости из		рабочей жидкости в
	термосистемы		термосистему следить, чтобы
	регулятора.		внутрь цилиндра,
			термосистему и капилляр не
			попали пузырьки воздуха!
			ЭТО ВАЖНО!
	2.1.Разгерметизация	Ослабло	Долить рабочую жидкость в
	соединения: гайка-	соединение	термосистему. Сильнее
	втулка-капилляр.	гайка-втулка-	закрутить накидную гайку.
	Рабочая жидкость	капилляр	Проверить осмотром
	проходит через		соединение на герметичность.
	места уплотнений	Износ резиновых	Разобрать соединение гайка-
	кольцами.	колец поршня.	втулка-капилляр. Вытолкнуть
			поршень и заменить
			резиновые кольца. Собрать
			конструкцию вновь.
			Дополнить термосистему
			рабочей жидкостью.
			Проверить ее на
			герметичность.
		l	T-PTerrit IIIO e IB.

2.2. Рабочая	Разгерметизация	Слить жидкость из
жидкость поступает	шва	термосистемы. Заварить шов.
через сварной шов	термосистемы.	Заполнить термосистему
термосистемы		рабочей жидкостью вновь и
регулятора.		проверить ее на
		герметичность.
2.3.Механическое	Несоблюдение	Вывернуть накидную гайку
повреждение	правил	крепления втулки с
капилляра в месте	транспортировки	капилляром из термосистемы.
соединения втулка-	регулятора или	Вынув соединение втулка-
капилляр.	случайное	капилляр, удалить сварной
	повреждение при	шов высверливанием,
	установке	отпилить поврежденный
	регулятора в	участок капилляра, вставить
	систему	капилляр во втулку и
	отопления.	приварить его к втулке. В
		обратном порядке
		смонтировать соединение
		гайка- втулка –капилляр.
		Дополнить термосистему
		рабочей жидкостью и
		закрутить накидную гайку.
		Проверить систему на
		герметичность.
2.4.Разрыв	Несоблюдение	Произвести устранение
капилляра при	характеристик	неисправности также, как в
высоком давлении	раздела 2.	пункте 2.3.
рабочей жидкости в		
термосистеме.		

8.9.Основные детали, подвергающиеся монтажу при ремонте регулятора, показаны на рисунке 9.

- 1.Втулка
- 2. Уплотнительная шайба
- 3.Поршень
- 4. Резиновые кольца Ø19,2xØ11x4 (а/м ВАЗ) Марка резины 511524
- 5. Капилляр
- 6.Гайка

Рисунок 9

После ремонта регулятора и проверки его на герметичность можно устанавливать его в системы отопления, ГВС или приточной вентиляции. Провести настройку регулятора, соблюдая требования раздела 6 и раздела 2.

9.Правила хранения и транспортировки

- 9.1. Условия хранения 2С по ГОСТ 15150-69.
- 9.2. При хранении и транспортировке беречь капилляр от повреждения.
- 9.3. Транспортировать в заводской упаковке любым видом транспорта. Упаковку производить в соответствии с требованиями ГОСТ 23170-78, ГОСТ 9.014-78.

И

10.Свидетельство о приемке

Регулятор (партия) РТВЖ-К	исп	зав.№	
соответствует технической документац	ии предприят	гия-изготовите	ля
признан годным для эксплуатации.			
Дата изготовления			
Ответственный сдатчик ЗАО УЭСК	«КОРАЛ»		
		подпись	
Представитель ОТК ЗАО УЭСК «КО)РАЛ»		
		подпись	

Штамп ОТК

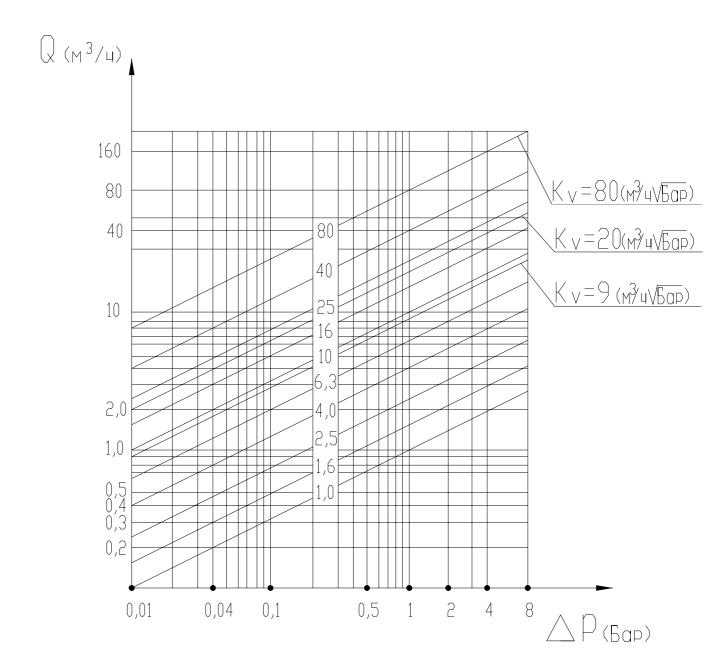
11. Гарантии производителя

Предприятие гарантирует соответствие регулятора технической документации в течение 12 месяцев со дня ввода в эксплуатацию при соблюдении условий хранения, транспортировки, монтажа и эксплуатации, указанных в настоящем руководстве, а также при соблюдении требований действующих нормативных документов по проектированию, монтажу и эксплуатации тепловых сетей, но не более 18 месяцев с момента передачи продукции покупателю.

Предприятие не несет ответственности в случае нарушения потребителем пломбировки.

12. Об авторских правах

Изделие запатентовано и охраняется Законом РФ от 09.07.93 № 5351-I «Об авторском праве и смежных правах» и «Патентным законом РФ» от 23.09.92 № 3517-I. Копирование и воспроизведение изделия запрещено.


13. Сведения о рекламации

Рекламацию на некачественную продукцию предъявляют в порядке, предусмотренном инструкцией «О порядке приемки продукции производственно- технического назначения по качеству», введенной в действие Постановлением Госарбитража при СМ СССР от 25.04.66г.

14. Адрес производителя

620017 Екатеринбург, ул. Турбинная, 7 Тел./факс (343) 334-24-00. Тел. (343) 334-53-37, 334-09-63, 334-53-64, 365-82-76.

Диаграмма расхода для воды

ВНИМАНИЕ! Минимальный расход рабочей среды (см. п. 2.4.) должен обеспечиваться системой, в которой устанавливается регулятор.