ТЕХНИЧЕСКИЙ ПАСПОРТ

РЕГУЛЯТОР ДАВЛЕНИЯ ВОДЫ МЕМБРАННЫЙ РУ25 РН=1-7 БАР

Сертификат соответствия: EAЭС N RU Д-CN.PA05.B.93470/22

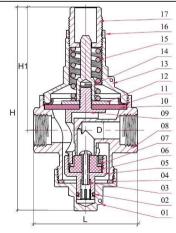
Выдан Испытательной лабораторией ООО «ПОЛИТЕК Групп» (аттестат аккредитации №RA.RU.21AИ71)

Срок действия с 26.08.2022 по 24.08.2027

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Регулятор давления предназначен для регулируемого снижения давления транспортируемой среды в сетях холодного и горячего водоснабжения.

Регулятор поддерживает на выходе давление, не превышающее настроечное, вне зависимости от скачков давления в сети. В статическом режиме давление после регулятора также не превышает настроечное. Регулирование происходит по схеме «после себя».


Наличие демпфирующей камеры снижает пределы допустимых отклонений выходного давления при резких скачках давления на входе в регулятор.

Регулятор имеет боковые резьбовые патрубки для присоединения манометра (приобретается отдельно). Патрубки заглушены нейлоновыми заглушками.

2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1.

N.	V	Ед. изм	Ду					
Nº	Характеристика		1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
1	Рабочее давление	МПа	2,5					
2	Макс. температура рабочей среды	°C				80		
3	Пределы регулирования	МПа			0,	1-0,7		
4	Заводская настройка давления на выходе	МПа	0,3					
5	Усл. пропускная способность по ГОСТ Р 55023-2012 и СТ ЦКБА 029-2006)(100%)	м3/час	2,85	3,6	4,38	7,25	13,25	18,3
6	Номинальный расход (при скорости 2м/с по DIN EN 1567	м3/час	1,27	2,26	3,53	5,79	9,0	14,1
7	Номинальный расход (при скорости 1,5 м/с по СП 30.13330.2012)	м3/час	0,95	1,7	2,65	4,34	6,78	10,6
8	Расход при падении давления от настроечного 1,0 бар	м3/час	2,4	3,0	3,8	6,4	11,3	15,0
9	Расход при падении давления от настроечного 1,2 бар	м3/час	2,6	3,2	4,0	7,0	12,5	17,0
10	Присоединительная резьба под манометр	дюйм	1/4"					
11	Рабочая среда		Вода, гликоль 50%					

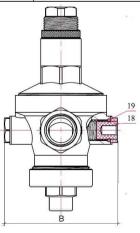


Рис.1

Таблица 2. Наименование деталей позиций (см. Рис 1) и материалы.

Nº	Наименование	Материал	N∘	Наименование	Материал
1	Нижняя крышка	Латунь HPb59-1	11	Упл. шайба	NYLON
2	Упл. кольцо	EPDM	12	Дефлектор	Латунь HPb59-1
3	Винт	Латунь HPb59-1	13	Верхняя крышка	Латунь HPb59-1
4	Прокладка	Паронит	14	Шток	Латунь HPb59-1
5	Колпачок	Латунь HPb59-1	15	Пружина	Сталь
6	Упл. шайба	EPDM	16	Контргайка	Латунь HPb59-1
7	Прижимное кольцо	Латунь HPb59-1	17	Регулировочная втулка	Латунь HPb59-1
8	Корпус	Латунь HPb59-1	18	Заглушка	NYLON
9	Картридж	Латунь HPb59-1	19	Упл. кольцо	EPDM
10	Мембрана	EPDM			

Таблица 3. Габаритные размеры регуляторов.

Ду	В, мм	L, мм	Н1, мм	Н, мм	øD, мм	Вес,г
1/2"	73	69	79,5	131	11	686
3/4"	73	72	82	131	11	768
1"	84	83	104	168	15	1150
1 1/4"	84	85	108	168	15	1276
1 1/2"	110	108	139	220	20	2515
2"	110	110	145	220	20	2835

Таблица 4. Kvs.

Ду	Kvs¹, м³/ч
1/2"	1,47
3/4"	2,32
1"	4,49
1 1/4"	4,22
1 1/2"	6,48
2"	6,39

¹⁻допуск отклонения Kvs в пределах ±7%

3. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ИЗДЕЛИЯ

Регулятор давления состоит из корпуса с входным и выходным патрубками.

Принцип работы – редуцирование давления за счет воздействия сетевого давления на чувствительный элемент и регулирующий орган.

4. МЕРЫ БЕЗОПАСНОСТИ

Не использовать регуляторы в системах с давлением выше 2,5 МПа.

При установке манометра, демонтаже прибора убедиться в отсутствии давления в трубопроводе.

5. РУКОВОДСТВО ПО МОНТАЖУ И ЭКСПЛУАТАЦИИ

Регулятор может монтироваться в любом монтажном положении. Направление потока должно совпадать с направлением стрелки на корпусе прибора. Регулировочная втулка должна быть доступна для регулирования. Расположение регулятора должно позволять легко производить его настройку и техническое обслуживание. Перед регулятором требуется установить фильтр механической очистки с фильтрующей способностью не более 500 мкм.

Редуктор следует предохранять от гидравлических ударов, т.к. они могут привести к повреждению мембраны. Монтаж следует производить с соблюдением следующих условий:

- подводящую часть трубопровода тщательно очистить и промыть;
- не допустить попадания подмоточного материала (ФУМ, сантехническая нить) в рабочие полости регулятора.
- при новом строительстве и капремонте опрессовку и промывку трубопроводов проводить до установки регуляторов.

В соответствии с ГОСТ 12.2.063-2015 п.9.6, арматура не должна испытывать нагрузок от трубопровода (при изгибе, скатии, растяжении, кручении, перекосах, вибрации, неравномерности затяжки крепежа и т.д.). При необходимости должны быть предусмотрены опоры или компенсаторы, устраняющие нагрузку на арматуру от трубопровода.

Предельный крутящий момент при монтаже регулятора в таблице ниже.

Ду	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
Крутящий момент,Нм	35	45	65	90	130	160

Остальные технические требования при монтаже по СП 73.13330.2012 «Внутренние санитарно-технические системы».

Регулятор рекомендуется устанавливать перед водосчетчиком.

Контроль давления проводится по манометру, который может быть установлен на регулятор в место заглушки (18). Манометр показывает давление на выходе регулятора.

Для изменения настройки следует ослабить контргайку (16) и вращая с помощью ключа регулировочную втулку (17), установить требуемое давление по показаниям манометра. Вращение гайки по часовой стрелке приводит к увеличению настроечного давления, против часовой стрелки – к его уменьшению. После настройки затянуть контргайку.

6. УСЛОВИЯ ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ

Изделия должны храниться в упаковке предприятия – изготовителя по условиям хранения 3 по ГОСТ 15150. Консервация по ВЗ-4, ВУ-0 ГОСТ 9.014-78.

Транспортировка изделий должна осуществляться в соответствии с условиями 5 по ГОСТ 15150.

7. УТИЛИЗАЦИЯ

Утилизация изделия (переплавка, захоронение, перепродажа) производится в порядке, установленном Законами РФ от 04 мая 1999 г. № 96-ФЗ "Об охране атмосферного воздуха" (с изменениями и дополнениями), от 24 июня 1998 г. № 89-ФЗ (с изменениями и дополнениями) "Об отходах производства и потребления", от 10 января 2002 № 7-ФЗ « Об охране окружающей среды» (с изменениями и дополнениями), а также другими российскими и региональными нормами, актами, правилами, распоряжениями и пр., принятыми во использование указанных законов.

Содержание благородных металлов:нет.

8. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Изготовитель гарантирует соответствие товара настоящему паспорту при соблюдении Потребителем условий эксплуатации, транспортировки и хранения. Гарантийные обязательства распространяются на все дефекты, возникшие по вине завода-изготовителя.

Гарантия не распространяется на дефекты, возникшие в случаях:

- нарушения паспортных режимов хранения, монтажа, испытания, эксплуатации и обслуживания изделия;
- наличия следов воздействия веществ, агрессивных к материалам изделия;
- наличия повреждений, вызванных пожаром, стихией, форс-мажорными обстоятельствами;
- повреждений, вызванных неправильными действиями потребителя;
- наличия механических повреждений или следов вмешательства в конструкцию.

ГАРАНТИЙНЫЙ СРОК —
7 ЛЕТ НА КОРПУС И 2 ГОДА НА ДЕТАЛИ
РЕГУЛЯТОРА С ДАТЫ ПРОДАЖИ
СРОК СЛУЖБЫ—
7 ЛЕТ НА КОРПУС И 2 ГОДА НА ДЕТАЛИ
РЕГУЛЯТОРА

Количество:	
Дата:	МЕСТО ДЛЯ ПЕЧАТИ
Подпись:	

Производитель: ZHEJIANG YUQUAN FLUID TECHNOLOGY CO.,LTD BUILDING 1, NO.35, TIANYOU ROAD, SHAMEN, YUHUAN ZHEJIANG, CHINA