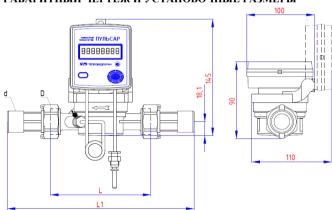
11 СВИЛЕТЕЛЬСТВО О ПРИЕМКЕ

Теплосчетчик	компактный	«Пульсар»,	заводской	№	,	соответствует	требованиям
технических условий	TY 4213-039-4	4883489-2013	и признан г	олны	м к эксплуатании.		

Штамп ОТК	Дата выпуска


12 СВИДЕТЕЛЬСТВО О ПОВЕРКЕ

Теплосчетчик компактный «Пульсар» прошёл поверку в соответствии с таблицей:

Дата поверки	Наименование поверки	Результат поверки (годен/не годен)	Подпись поверителя	Клеймо поверительного органа	Дата очередной поверки
	Первичная до ввода в эксплуатацию	Годен			

Приложение А

ГАБАРИТНЫЙ ЧЕРТЕЖ И УСТАНОВОЧНЫЕ РАЗМЕРЫ

Номинальный диаметр Размер	15	20
D, мм	G3/4	G1
d, мм	G1/2	G3/4
L, MM	110	130
L ₁ , мм	204	234
Масса теплосчётчика без присоединителей, кг	0,82	0,92
Масса теплосчётчика с присоединителями, кг	1,0	1,2

Приложение Б

ТАБЛИЦА ЭЛЕКТРИЧЕСКИХ ПОДКЛЮЧЕНИЙ

1) <u>Исполнение с импульсным</u> выходом:

Коричневый – плюс Белый - минус

2) <u>Исполнение с интерфейсом</u> RS485:

 Белый
 – минус питания

 Коричневый
 – плюс питания

 Желтый
 - RS485 A

 Зеленый
 - RS485 B

3) <u>Исполнение с импульсными входами</u>:

импульсный вход 1

Бело-зелёный — плюс Зелёный — минус

импульсный вход 2

 ${f E}$ ело-синий - плюс ${f C}$ иний - минус

выход RS485

Бело-коричневый – плюс питания Коричневый – минус питания Бело-оранжевый - RS485 A Оранжевый - RS485 B

ООО НПП «ТЕПЛОВОДОХРАН»

ТЕПЛОСЧЕТЧИК КОМПАКТНЫЙ «ПУЛЬСАР» РЭ 4213-039-44883489-2013 Государственный реестр №55665-13

1 НАЗНАЧЕНИЕ

Теплосчетчики компактные «ПУЛЬСАР» (далее – теплосчетчики) предназначены для измерения тепловой энергии, объема и температуры теплоносителя, а также для подсчета количества импульсов, формируемых приборами учета с импульсным выходом.

Теплосчетчики включают в себя преобразователь расхода, вычислитель и пару платиновых термопреобразователей сопротивления. Принцип работы теплосчетчиков состоит в измерении объема и температуры теплоносителя в подающем и обратном трубопроводах и последующем определении тепловой энергии, путем обработки результатов измерений вычислителем.

Теплосчетчики измеряют, вычисляют и индицируют на ЖКИ следующие параметры:

- тепловую энергию, (Гкал);
- объем теплоносителя, (м³);
- температуру теплоносителя в подающем и обратном трубопроводах, (°C);
- разность температур в подающем и обратном трубопроводах, (°С);
- мгновенный расход теплоносителя, $(m^3/4)$;
- мгновенную тепловую мощность, (Гкал/ч);
- дату и время;
- объем воды, измеренный счетчиками с импульсным выходом, подключенными к дополнительным счетным входам (м3);
- сетевой адрес;
- коды ошибок.

Теплосчетчики имеют энергонезависимую память, в которой регистрируются значения тепловой энергии и параметры теплопотребления (средние температуры за интервал времени, объем теплоносителя за интервал времени). Глубина архива 60 месяцев, 184 суток и 1488 часов. В энергонезависимой памяти сохраняется журнал событий, содержащий информацию об ошибках, возникающих в процессе работы и изменении настроечных параметров.

Теплосчетчики могут использоваться в режиме измерения тепла в тупиковой системе горячего водоснабжения, а также как счетчик горячей воды, определяющий объем воды, температура которой выше заданного значения.

Преобразователь расхода устанавливается в прямом или в обратном трубопроводе. Место установки преобразователя расхода оговаривается при заказе.

Теплосчетчики поставляются с интерфейсом с RS485 или с импульсным выходом или с радиоинтерфейсом. Выбор интерфейса осуществляется при заказе прибора.

2 ТЕХНИЧЕСКИЕ И МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование параметра		Значение параметра				
Диаметр условного прохода, ДУ, мм		15		2	20	
Максимальный расход, Qmax, м3/час	1,2	2,0	3,0	3,0	5,0	
Номинальный расход, Qn, м3/час	0,6	1,0	1,5	1,5	2,5	
Минимальный расход, Qmin, м3/час	0,012	0,02	0,03	0,03	0,05	
Относительная погрешность измерения объема, %		$\pm (2+0.05 \cdot (Qn/Q))$				
Диапазон измерений температуры, °C		0130				
Диапазон измерений разности температур (∆t), °С		2130				
Абсолютная погрешность измерения разности температур, С		±(0),2+0,005	·∆t)		
Относительная погрешность измерения тепловой энергии, %		±(3+4/	∆t+0,02·	(Qn/Q))		
Абсолютная погрешность измерения количества импульсов дополнительными			± 1			
счетными входами, импульсов за период измерений			± 1			
Количество дополнительных счетных входов (в зависимости от заказа)		до 4				
Максимальное рабочее давление, МПа		1,6				
Потеря давления при Qn, МПа, не более		0,015				
Напряжение встроенного элемента питания, В		3,6				
Срок службы элемента питания, лет, не менее		6				
Класс защиты по ГОСТ 14254		IP 54				
Срок службы, лет, не менее		12				
Напряжение питания интерфейса, В		930				
Ток потребления от внешнего источника, мА не более		10				
Порог переполнения счетчика «Энергия», Гкал		100,0				
Максимальное значение на дисплее прибора, Гкал		99,9999				
Максимальное значение на дисплее прибора, м ³		999,999				
Пороги переполнения по импульсным входам		1000000,0				
Количество импульсных входов (исполнение по заказу)		2				
Длительность импульса, мсек.		125				
Вес импульса, Гкал (по заказу возможны другие значения)		0,001				
Максимальный коммутируемый ток импульсного выхода, мА		50				
Максимальное коммутируемое напряжение импульсного выхода, В			24			

3 СОСТАВ ИЗЛЕЛИЯ

Комплект поставки теплосчетчика определяется при заказе из состава, указанного в таблице:

Наименование	Количество	
Теплосчетчик компактный «Пульсар»	1	
Руководство по эксплуатации	1	
Комплект присоединителей	Согласно заказу	
Шаровой кран для термометра сопротивления	Согласно заказу	

4 ОПИСАНИЕ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ

При нажатии на кнопку, расположенную на передней панели, происходит циклическое переключение между режимами индикации

00000588	Сетевой адрес прибора, информация о типе теплосчетчика: • «в подачу» / • «в обратку»		
08.0820 12	Дата		
08-28-50	Время		
0000000 Гкал 00000000 Мкал Д ↓ ↓ Ф 🖺 • ш * м³/ч	Тест ЖКИ (все сегменты вкл/выкл.)		
42308 ^{Гкал}	Тепловая энергия (накопленное значение)		
26 <u>8</u> 9	Объем теплоносителя (накопленное значение)		
0.000 _{M³/4}	Расход теплоносителя (мгновенное значение)		
E, 76.9 I	Температура в прямом трубопроводе, °С		
£ 5 164	Температура в обратном трубопроводе, °С		
df. 25.15	Разница температур в прямом и обратном трубопроводах, °C		
0.0008320 ^{Гкал} * /ч	Тепловая мощность (мгновенное значение)		

Знак # означает, что крыльчатка расходомера вращается, т.е. счетчик регистрирует расход теплоносителя. На индикаторе могут отображаться следующие виды ошибок (об ошибке сигнализирует значок Δ):

- разряжена батарея (мигает значок батареи ш);
- разница температур подающего и обратного термометра имеет отрицательное значение (митают значки обоих термометров);
- ошибка энергонезависимой памяти (мигает значок □);
- короткое замыкание термометра (вместо температуры выводится значение 999.00);
- обрыв термометра (вместо температуры выводится значение 999,00);
- неисправность АЦП (вместо температуры выводится значение 888,00).

5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

По степени защиты от поражения электрическим током теплосчетчик относится к классу ІІІ по ГОСТ 12.2.007.0.

ПРЕДУПРЕЖДЕНИЕ

- о При ненадлежащем обращении с литиевой батареей возникает опасность взрыва.
- о Батареи
 - никогда не заряжайте
 - не вскрывайте
 - не замыкайте накоротко на время более 1 с
 - не перепутывайте полюса
 - не нагревайте свыше 100 °C
 - защищайте от прямых солнечных лучей.
- На батареях не должна конденсироваться влага.
- о При необходимости транспортировки следует соблюдать предписания по обращению с опасными грузами для соответствующего вида транспорта (обязательная маркировка).
 - о Использованные литиевые батареи относятся к специальному виду отходов.

6 ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ, РАЗМЕЩЕНИЕ, МОНТАЖ

6.1 Подготовка изделия к установке на месте эксплуатации

Перед установкой теплосчётчика проверьте его комплектность в соответствии с паспортом. Выполните внепний осмотр с целью выявления механических повреждений корпуса прибора. Если прибор находился в условиях, отличных от условий эксплуатации, то перед вводом в эксплуатацию необходимо выдержать его в указанных условиях не менее 2 ч.

6.2 Размешение

При выборе места для установки следует руководствоваться следующими критериями: не следует устанавливать теплосчетчик в местах, где возможно присутствие пыли или агрессивных газов, располагать вблизи мощных источников электромагнитных и тепловых излучений или в местах, подверженных тряске, вибращии или воздействию воды.

При монтаже необходимо учитывать, что теплосчетчик может быть сконфигурирован для работы в прямом или обратном трубопроводе. Перед установкой расходомера трубопровод необходимо промыть, чтобы удалить из него окалину, песок и другие твердые частицы. Прямые участки трубопровода должны быть не менее 3 Ду до и 1 Ду после расходомера.

6.3 Монтаж

При монтаже расходомеров необходимо соблюдать следующие условия:

- направление стрелки на корпусе счетчика должно совпадать с направлением потока воды в трубопроводе;
- присоединительные штуцеры соединить с трубопроводом, установить прокладки между штуцером и расходомером, затянуть накидные гайки;
 - установить расходомер в трубопроводе без натягов, сжатий и перекосов;
 - установить расходомер так, чтобы он был всегда заполнен водой;
 - расходомер может устанавливаться на горизонтальном, наклонном и вертикальном трубопроводе.

! После установки расходомера проведение сварочных работ на трубопроводе не допускается.

Перел вводом расходомера в эксплуатацию проводят следующие операции:

- после монтажа расходомера воду подавать в магистраль медленно при открытых в ней воздушных клапанах для предотвращения разрушения расходомера под действием захваченного водой воздуха;
 - проверить герметичность выполненных соединений:
 - соединения должны выдерживать давление 1,6 МПа.

! Во вновь вводимую отопительную систему (дом-новостройка), после капитального ремонта или замены некоторой части труб расходомер можно устанавливать только после пуска системы в эксплуатацию и тплательной ее промывки (2-3 недели). На период ремонта отопительной сети расходомеры рекомендуется демонтировать и временно заменить соответствующей проставкой.

7 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание должно проводиться лицами, изучившими настоящее руководство по эксплуатации.

Техническое обслуживание состоит из:

- 1) периодического технического обслуживания в процессе эксплуатации;
- 2) технического обслуживания перед проведением поверки.

Периодическое обслуживание заключается в осмотре внешнего вида счетчика-регистратора, в снятии и сверке измерительной информации, подводке внутренних часов, в устранении причин, вызывающих ошибки в работе.

Осмотр рекомендуется проводить не реже 1 раза в 6 месяцев, при этом проверяется надежность крепления прибора на месте эксплуатации, состояние кабельных линий и сохранность пломб.

Снятие информации следует проводить с использованием персонального компьютера через интерфейс.

Обслуживание перед поверкой заключается в замене литиевой батареи.

8 ПОВЕРКА

Теплосчетчик подлежит поверке, согласно МП РТ 1940-2013.

«Методика поверки теплосчетчиков компактных «Пульсар». Периодическая поверка проводится один раз в шесть лет.

9 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Теплосчетчик в упаковке предприятия-изготовителя следует транспортировать любым видом транспорта в крытых транспортных средствах на любые расстояния. Во время транспортирования и погрузочно-разгрузочных работ транспортная тара не должна подвергаться резким ударам и прямому воздействию атмосферных осадков и пыли.

Предельные условия хранения и транспортирования:

- 1) температура окружающего воздуха от минус 25 до плюс 55 °C
- 2) относительная влажность воздуха не более 95%;
- 3) атмосферное давление не менее 61,33 кПа (460 мм рт. ст.)

Хранение приборов в упаковке на складах изготовителя и потребителя должно соответствовать условиям хранения "5" по ГОСТ 15150.

10 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 10.1 Изготовитель гарантирует соответствие изделия требованиям ТУ 4213-039-44883489-2013 при соблюдении потребителем условий эксплуатации, хранения, транспортирования и монтажа.
 - 10.2 Гарантийный срок на механическую часть прибора составляет 60 месяцев.
 - 10.3 Гарантийный срок на электронную часть прибора равен сроку службы прибора.
 - 10.4 Гарантийный срок на литиевую батарею равен сроку службы батареи.
- 10.5 Изготовитель не принимает рекламации, если теплосчетчики вышли из строя по вине потребителя изза неправильной эксплуатации или при несоблюдении указаний, приведенных в настоящем «Руководстве».
 - 10.6 В гарантийный ремонт принимаются теплосчетчики полностью укомплектованные и с настоящим руководством.

По всем вопросам, связанным с качеством продукции, следует обращаться на предприятие-изготовитель:

Россия, 390027, г. Рязань, ул. Новая, 51в Т./ф. (4912) 24-02-70 e-mail: info@teplovodokhran.ru http://www.teplovodokhran.ru